Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1

Authors: Kakali Dhar, Gopal Dhar, Monami Majumder, Inamul Haque, Smita Mehta, Peter J Van Veldhuizen, Sushanta K Banerjee, Snigdha Banerjee

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

New blood vessel formation, or angiogenic switch, is an essential event in the development of solid tumors and their metastatic growth. Tumor blood vessel formation and remodeling is a complex and multi-step processes. The differentiation and recruitment of mural cells including vascular smooth muscle cells and pericytes are essential steps in tumor angiogenesis. However, the role of tumor cells in differentiation and recruitment of mural cells has not yet been fully elucidated. This study focuses on the role of human tumor cells in governing the differentiation of mouse mesenchymal stem cells (MSCs) to pericytes and their recruitment in the tumor angiogenesis process.

Results

We show that C3H/10T1/2 mouse embryonic mesenchymal stem cells, under the influence of different tumor cell-derived conditioned media, differentiate into mature pericytes. These differentiated pericytes, in turn, are recruited to bind with capillary-like networks formed by endothelial cells on the matrigel under in vitro conditions and recruited to bind with blood vessels on gel-foam under in vivo conditions. The degree of recruitment of pericytes into in vitro neo-angiogenesis is tumor cell phenotype specific. Interestingly, invasive cells recruit less pericytes as compared to non-invasive cells. We identified tumor cell-secreted platelet-derived growth factor-B (PDGF-B) as a crucial factor controlling the differentiation and recruitment processes through an interaction with neuropilin-1 (NRP-1) in mesenchymal stem cells.

Conclusion

These new insights into the roles of tumor cell-secreted PDGF-B-NRP-1 signaling in MSCs-fate determination may help to develop new antiangiogenic strategies to prevent the tumor growth and metastasis and result in more effective cancer therapies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature. 2000, 407: 249-257. 10.1038/35025220CrossRefPubMed Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature. 2000, 407: 249-257. 10.1038/35025220CrossRefPubMed
3.
4.
go back to reference Folkman J: Angiogenesis and angiogenesis inhibition: an overview. EXS. 1997, 79: 1-8.PubMed Folkman J: Angiogenesis and angiogenesis inhibition: an overview. EXS. 1997, 79: 1-8.PubMed
5.
go back to reference Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP: Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate. 2001, 49: 293-305. 10.1002/pros.10025CrossRefPubMed Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP: Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate. 2001, 49: 293-305. 10.1002/pros.10025CrossRefPubMed
6.
7.
go back to reference Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA: Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest. 1991, 88: 904-910. 10.1172/JCI115393PubMedCentralCrossRefPubMed Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA: Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest. 1991, 88: 904-910. 10.1172/JCI115393PubMedCentralCrossRefPubMed
8.
go back to reference Miyagawa J, Higashiyama S, Kawata S, Inui Y, Tamura S, Yamamoto K, Nishida M, Nakamura T, Yamashita S, Matsuzawa Y: Localization of heparin-binding EGF-like growth factor in the smooth muscle cells and macrophages of human atherosclerotic plaques. J Clin Invest. 1995, 95: 404-411. 10.1172/JCI117669PubMedCentralCrossRefPubMed Miyagawa J, Higashiyama S, Kawata S, Inui Y, Tamura S, Yamamoto K, Nishida M, Nakamura T, Yamashita S, Matsuzawa Y: Localization of heparin-binding EGF-like growth factor in the smooth muscle cells and macrophages of human atherosclerotic plaques. J Clin Invest. 1995, 95: 404-411. 10.1172/JCI117669PubMedCentralCrossRefPubMed
9.
go back to reference Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995, 270: 1491-1494. 10.1126/science.270.5241.1491CrossRefPubMed Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995, 270: 1491-1494. 10.1126/science.270.5241.1491CrossRefPubMed
10.
go back to reference Hirschi KK, Rohovsky SA, D'Amore PA: PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998, 141: 805-814. 10.1083/jcb.141.3.805PubMedCentralCrossRefPubMed Hirschi KK, Rohovsky SA, D'Amore PA: PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998, 141: 805-814. 10.1083/jcb.141.3.805PubMedCentralCrossRefPubMed
11.
go back to reference Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003, 314: 15-23. 10.1007/s00441-003-0745-xCrossRefPubMed Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003, 314: 15-23. 10.1007/s00441-003-0745-xCrossRefPubMed
12.
go back to reference Nehls V, Denzer K, Drenckhahn D: Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 1992, 270: 469-474. 10.1007/BF00645048CrossRefPubMed Nehls V, Denzer K, Drenckhahn D: Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 1992, 270: 469-474. 10.1007/BF00645048CrossRefPubMed
13.
go back to reference Iruela-Arispe L: Endothelial cell activation. Angiogenesis: An integrative approach from science to medicine. Edited by: Figg WD, Folkman J. 2008, 35-44. NY: Springer,CrossRef Iruela-Arispe L: Endothelial cell activation. Angiogenesis: An integrative approach from science to medicine. Edited by: Figg WD, Folkman J. 2008, 35-44. NY: Springer,CrossRef
14.
go back to reference Bergers G: Pericytes, the mural cells of the microvascular system. Angiogenesis: An integrative approach from science to medicine. Edited by: Figg WD, Folkman J. 2008, 45-53. NY: Springer,CrossRef Bergers G: Pericytes, the mural cells of the microvascular system. Angiogenesis: An integrative approach from science to medicine. Edited by: Figg WD, Folkman J. 2008, 45-53. NY: Springer,CrossRef
15.
go back to reference McDonald DM: Angiogenesis and vascular remodeling in inflammation and cancer: Biology and architecture of the vasculature. Angiogenesis: An integrative approach from science to medicine. Edited by: Figg WD, Folkman J. 2008, 17-33. NY: Springer,CrossRef McDonald DM: Angiogenesis and vascular remodeling in inflammation and cancer: Biology and architecture of the vasculature. Angiogenesis: An integrative approach from science to medicine. Edited by: Figg WD, Folkman J. 2008, 17-33. NY: Springer,CrossRef
16.
go back to reference Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002, 160: 985-1000.PubMedCentralCrossRefPubMed Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002, 160: 985-1000.PubMedCentralCrossRefPubMed
17.
go back to reference D'Amore PA, Shima DT: Tumor angiogenesis: a physiological process or genetically determined?. Cancer Metastasis Rev. 1996, 15: 205-212. 10.1007/BF00437473CrossRefPubMed D'Amore PA, Shima DT: Tumor angiogenesis: a physiological process or genetically determined?. Cancer Metastasis Rev. 1996, 15: 205-212. 10.1007/BF00437473CrossRefPubMed
18.
go back to reference Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C: Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003, 17: 1835-1840. 10.1101/gad.266803PubMedCentralCrossRefPubMed Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C: Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003, 17: 1835-1840. 10.1101/gad.266803PubMedCentralCrossRefPubMed
19.
go back to reference Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY: Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003, 162: 1083-1093.PubMedCentralCrossRefPubMed Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY: Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003, 162: 1083-1093.PubMedCentralCrossRefPubMed
20.
go back to reference Banerjee S, Sengupta K, Dhar K, Mehta S, D'Amore PA, Dhar G, Banerjee SK: Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog. 2006, 45: 871-880. 10.1002/mc.20248CrossRefPubMed Banerjee S, Sengupta K, Dhar K, Mehta S, D'Amore PA, Dhar G, Banerjee SK: Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog. 2006, 45: 871-880. 10.1002/mc.20248CrossRefPubMed
21.
go back to reference Banerjee S, Mehta S, Haque I, Sengupta K, Dhar K, Kambhampati S, Van Veldhuizen PJ, Banerjee SK: VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis. Biochemistry. 2008, 47: 3345-3351. 10.1021/bi8000352CrossRefPubMed Banerjee S, Mehta S, Haque I, Sengupta K, Dhar K, Kambhampati S, Van Veldhuizen PJ, Banerjee SK: VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis. Biochemistry. 2008, 47: 3345-3351. 10.1021/bi8000352CrossRefPubMed
22.
go back to reference Reznikoff CA, Brankow DW, Heidelberger C: Establishment and characterization of a cloned line of C3 H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 1973, 33: 3231-3238.PubMed Reznikoff CA, Brankow DW, Heidelberger C: Establishment and characterization of a cloned line of C3 H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 1973, 33: 3231-3238.PubMed
23.
go back to reference Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009, 4: e4992- 10.1371/journal.pone.0004992PubMedCentralCrossRefPubMed Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009, 4: e4992- 10.1371/journal.pone.0004992PubMedCentralCrossRefPubMed
24.
go back to reference Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, Kim JH: Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells. 2008, 26: 789-797. 10.1634/stemcells.2007-0742CrossRefPubMed Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, Kim JH: Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells. 2008, 26: 789-797. 10.1634/stemcells.2007-0742CrossRefPubMed
25.
go back to reference Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F: Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol. 2007, 86: 8-16. 10.1532/IJH97.06230CrossRefPubMed Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F: Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol. 2007, 86: 8-16. 10.1532/IJH97.06230CrossRefPubMed
26.
go back to reference Hall B, Andreeff M, Marini F: The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol. 2007, 263-283. Hall B, Andreeff M, Marini F: The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol. 2007, 263-283.
27.
go back to reference Darland DC, D'Amore PA: Cell-cell interactions in vascular development. Curr Top Dev Biol. 2001, 52: 107-149. full_textCrossRefPubMed Darland DC, D'Amore PA: Cell-cell interactions in vascular development. Curr Top Dev Biol. 2001, 52: 107-149. full_textCrossRefPubMed
28.
30.
go back to reference Etchevers HC, Couly G, Le Douarin NM: Morphogenesis of the branchial vascular sector. Trends Cardiovasc Med. 2002, 12: 299-304. 10.1016/S1050-1738(02)00178-0CrossRefPubMed Etchevers HC, Couly G, Le Douarin NM: Morphogenesis of the branchial vascular sector. Trends Cardiovasc Med. 2002, 12: 299-304. 10.1016/S1050-1738(02)00178-0CrossRefPubMed
31.
go back to reference Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML: Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol. 1998, 60: 267-286. 10.1146/annurev.physiol.60.1.267CrossRefPubMed Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML: Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol. 1998, 60: 267-286. 10.1146/annurev.physiol.60.1.267CrossRefPubMed
32.
go back to reference Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003, 111: 1287-1295.PubMedCentralCrossRefPubMed Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003, 111: 1287-1295.PubMedCentralCrossRefPubMed
33.
go back to reference Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999, 126: 3047-3055.PubMed Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999, 126: 3047-3055.PubMed
34.
go back to reference Lindahl P, Bostrom H, Karlsson L, Hellstrom M, Kalen M, Betsholtz C: Role of platelet-derived growth factors in angiogenesis and alveogenesis. Curr Top Pathol. 1999, 93: 27-33.CrossRefPubMed Lindahl P, Bostrom H, Karlsson L, Hellstrom M, Kalen M, Betsholtz C: Role of platelet-derived growth factors in angiogenesis and alveogenesis. Curr Top Pathol. 1999, 93: 27-33.CrossRefPubMed
35.
go back to reference Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000, 408: 92-96. 10.1038/35040568CrossRefPubMed Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000, 408: 92-96. 10.1038/35040568CrossRefPubMed
36.
go back to reference Carmeliet P: Manipulating angiogenesis in medicine. J Intern Med. 2004, 255: 538-561. 10.1111/j.1365-2796.2003.01297.xCrossRefPubMed Carmeliet P: Manipulating angiogenesis in medicine. J Intern Med. 2004, 255: 538-561. 10.1111/j.1365-2796.2003.01297.xCrossRefPubMed
37.
go back to reference Luttun A, Carmeliet P: Angiogenesis and lymphangiogenesis: highlights of the past year. Curr Opin Hematol. 2004, 11: 262-271. 10.1097/01.moh.0000126936.58889.95CrossRefPubMed Luttun A, Carmeliet P: Angiogenesis and lymphangiogenesis: highlights of the past year. Curr Opin Hematol. 2004, 11: 262-271. 10.1097/01.moh.0000126936.58889.95CrossRefPubMed
38.
go back to reference Pellet-Many C, Frankel P, Jia H, Zachary I: Neuropilins: structure, function and role in disease. Biochem J. 2008, 411: 211-226. 10.1042/BJ20071639CrossRefPubMed Pellet-Many C, Frankel P, Jia H, Zachary I: Neuropilins: structure, function and role in disease. Biochem J. 2008, 411: 211-226. 10.1042/BJ20071639CrossRefPubMed
39.
go back to reference Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M: Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci USA. 2002, 99: 10470-10475. 10.1073/pnas.162366299PubMedCentralCrossRefPubMed Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M: Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci USA. 2002, 99: 10470-10475. 10.1073/pnas.162366299PubMedCentralCrossRefPubMed
40.
41.
go back to reference Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7CrossRefPubMed Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7CrossRefPubMed
42.
go back to reference Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H: Pericytes limit tumor cell metastasis. J Clin Invest. 2006, 116: 642-651. 10.1172/JCI25705PubMedCentralCrossRefPubMed Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H: Pericytes limit tumor cell metastasis. J Clin Invest. 2006, 116: 642-651. 10.1172/JCI25705PubMedCentralCrossRefPubMed
43.
go back to reference Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamura M: Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology. 2005, 69: 159-166. 10.1159/000087840CrossRefPubMed Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamura M: Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology. 2005, 69: 159-166. 10.1159/000087840CrossRefPubMed
44.
go back to reference Chodak GW, Haudenschild C, Gittes RF, Folkman J: Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann Surg. 1980, 192: 762-771. 10.1097/00000658-198012000-00012PubMedCentralCrossRefPubMed Chodak GW, Haudenschild C, Gittes RF, Folkman J: Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann Surg. 1980, 192: 762-771. 10.1097/00000658-198012000-00012PubMedCentralCrossRefPubMed
45.
go back to reference Amoh Y, Li L, Katsuoka K, Bouvet M, Hoffman RM: GFP-expressing vascularization of Gelfoam as a rapid in vivo assay of angiogenesis stimulators and inhibitors. Biotechniques. 2007, 42: 294, 296, 298- 10.2144/000112382CrossRefPubMed Amoh Y, Li L, Katsuoka K, Bouvet M, Hoffman RM: GFP-expressing vascularization of Gelfoam as a rapid in vivo assay of angiogenesis stimulators and inhibitors. Biotechniques. 2007, 42: 294, 296, 298- 10.2144/000112382CrossRefPubMed
46.
go back to reference Hayashi K, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Amoh Y, Hoffman RM, Bouvet M: Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res. 2007, 140: 165-170. 10.1016/j.jss.2006.11.018PubMedCentralCrossRefPubMed Hayashi K, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Amoh Y, Hoffman RM, Bouvet M: Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res. 2007, 140: 165-170. 10.1016/j.jss.2006.11.018PubMedCentralCrossRefPubMed
Metadata
Title
Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1
Authors
Kakali Dhar
Gopal Dhar
Monami Majumder
Inamul Haque
Smita Mehta
Peter J Van Veldhuizen
Sushanta K Banerjee
Snigdha Banerjee
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-209

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine