Skip to main content
Top
Published in: Molecular Cancer 1/2009

Open Access 01-12-2009 | Short communication

GSK3β N-terminus binding to p53 promotes its acetylation

Authors: Tae-Yeon Eom, Richard S Jope

Published in: Molecular Cancer | Issue 1/2009

Login to get access

Abstract

The prevalence in human cancers of mutations in p53 exemplifies its crucial role as a tumor suppressor transcription factor. Previous studies have shown that the constitutively active serine/threonine kinase glycogen synthase kinase-3β (GSK3β) associates with the C-terminal basic domain of p53 and regulates its actions. In this study we identified the GSK3β N-terminal amino acids 78–92 as necessary for its association with p53. Inhibitors of GSK3 impaired the acetylation of p53 at Lys373 and Lys382 near the GSK3β binding region in p53, indicating that GSK3β facilitates p53 acetylation. We also found that acetylation of p53 reduced its association with GSK3β, as well as with GSK3α. These results indicate that the N-terminal region of GSK3β binds p53, this association promotes the acetylation of p53, and subsequently acetylated p53 dissociates from GSK3.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jope RS, Johnson GVW: The glamour and gloom of glycogen synthase kinase-3 (GSK3). Trends Biochem Sci. 2004, 29: 95-102. 10.1016/j.tibs.2003.12.004CrossRefPubMed Jope RS, Johnson GVW: The glamour and gloom of glycogen synthase kinase-3 (GSK3). Trends Biochem Sci. 2004, 29: 95-102. 10.1016/j.tibs.2003.12.004CrossRefPubMed
2.
go back to reference Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J. 2003, 22: 494-501. 10.1093/emboj/cdg068PubMedCentralCrossRefPubMed Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J. 2003, 22: 494-501. 10.1093/emboj/cdg068PubMedCentralCrossRefPubMed
3.
go back to reference Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJB, Smith DG, Reith AD: The structure of phosphorylated GSK-3β complexed with a peptide, FRATtide, that inhibits β-catenin phosphorylation. Structure. 2001, 9: 1143-1152. 10.1016/S0969-2126(01)00679-7CrossRefPubMed Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJB, Smith DG, Reith AD: The structure of phosphorylated GSK-3β complexed with a peptide, FRATtide, that inhibits β-catenin phosphorylation. Structure. 2001, 9: 1143-1152. 10.1016/S0969-2126(01)00679-7CrossRefPubMed
4.
go back to reference Ferkey DM, Kimelman D: Glycogen synthase kinase-3β mutagenesis identifies a common binding domain for GBP and Axin. J Biol Chem. 2002, 277: 16147-16152. 10.1074/jbc.M112363200CrossRefPubMed Ferkey DM, Kimelman D: Glycogen synthase kinase-3β mutagenesis identifies a common binding domain for GBP and Axin. J Biol Chem. 2002, 277: 16147-16152. 10.1074/jbc.M112363200CrossRefPubMed
5.
go back to reference Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RS, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC: Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J Biol Chem. 2002, 277: 2176-2185. 10.1074/jbc.M109462200CrossRefPubMed Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RS, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC: Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J Biol Chem. 2002, 277: 2176-2185. 10.1074/jbc.M109462200CrossRefPubMed
6.
go back to reference Meares GP, Jope RS: Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J Biol Chem. 2007, 282: 16989-17001. 10.1074/jbc.M700610200PubMedCentralCrossRefPubMed Meares GP, Jope RS: Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J Biol Chem. 2007, 282: 16989-17001. 10.1074/jbc.M700610200PubMedCentralCrossRefPubMed
7.
go back to reference Haupt Y, Robles AI, Prives C, Rotter V: Deconstruction of p53 functions and regulation. Oncogene. 2002, 21: 8223-8231. 10.1038/sj.onc.1206137CrossRefPubMed Haupt Y, Robles AI, Prives C, Rotter V: Deconstruction of p53 functions and regulation. Oncogene. 2002, 21: 8223-8231. 10.1038/sj.onc.1206137CrossRefPubMed
8.
go back to reference Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GVW, Jope RS: Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage. Proc Natl Acad Sci USA. 2002, 99: 7951-7955. 10.1073/pnas.122062299PubMedCentralCrossRefPubMed Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GVW, Jope RS: Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage. Proc Natl Acad Sci USA. 2002, 99: 7951-7955. 10.1073/pnas.122062299PubMedCentralCrossRefPubMed
9.
go back to reference Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS: Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. J Biol Chem. 2003, 278: 48872-48879. 10.1074/jbc.M305870200PubMedCentralCrossRefPubMed Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS: Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. J Biol Chem. 2003, 278: 48872-48879. 10.1074/jbc.M305870200PubMedCentralCrossRefPubMed
10.
go back to reference Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ, Ruiz-Ruiz C, Cadoret A, Capeau J, Desbois-Mouthon C: GSK3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res. 2004, 300: 354-364. 10.1016/j.yexcr.2004.08.001CrossRefPubMed Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ, Ruiz-Ruiz C, Cadoret A, Capeau J, Desbois-Mouthon C: GSK3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res. 2004, 300: 354-364. 10.1016/j.yexcr.2004.08.001CrossRefPubMed
11.
go back to reference Zmijewski JW, Jope RS: Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell. 2004, 3: 309-317. 10.1111/j.1474-9728.2004.00117.xPubMedCentralCrossRefPubMed Zmijewski JW, Jope RS: Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell. 2004, 3: 309-317. 10.1111/j.1474-9728.2004.00117.xPubMedCentralCrossRefPubMed
12.
go back to reference Turenne GA, Price BD: Glycogen synthase kinase3β phosphorylates serine 33 of p53 and activates p53's transcriptional activity. BMC Cell Biol. 2001, 2: 12- 10.1186/1471-2121-2-12PubMedCentralCrossRefPubMed Turenne GA, Price BD: Glycogen synthase kinase3β phosphorylates serine 33 of p53 and activates p53's transcriptional activity. BMC Cell Biol. 2001, 2: 12- 10.1186/1471-2121-2-12PubMedCentralCrossRefPubMed
13.
go back to reference Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A, Koromilas AE: Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3β. Genes Dev. 2004, 18: 261-277. 10.1101/gad.1165804PubMedCentralCrossRefPubMed Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A, Koromilas AE: Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3β. Genes Dev. 2004, 18: 261-277. 10.1101/gad.1165804PubMedCentralCrossRefPubMed
14.
go back to reference Pluquet O, Qu LK, Baltzis D, Koromilas AE: Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3β. Mol Cell Biol. 2005, 25: 9392-9405. 10.1128/MCB.25.21.9392-9405.2005PubMedCentralCrossRefPubMed Pluquet O, Qu LK, Baltzis D, Koromilas AE: Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3β. Mol Cell Biol. 2005, 25: 9392-9405. 10.1128/MCB.25.21.9392-9405.2005PubMedCentralCrossRefPubMed
15.
go back to reference Gu W, Roeder R: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997, 90: 595-606. 10.1016/S0092-8674(00)80521-8CrossRefPubMed Gu W, Roeder R: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997, 90: 595-606. 10.1016/S0092-8674(00)80521-8CrossRefPubMed
16.
go back to reference Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL: p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999, 19: 1202-1209.PubMedCentralPubMed Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL: p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999, 19: 1202-1209.PubMedCentralPubMed
17.
go back to reference Li M, Luo J, Brooks CL, Gu W: Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem. 2002, 277: 50607-50611. 10.1074/jbc.C200578200CrossRefPubMed Li M, Luo J, Brooks CL, Gu W: Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem. 2002, 277: 50607-50611. 10.1074/jbc.C200578200CrossRefPubMed
18.
go back to reference Roy S, Tenniswood M: Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem. 2007, 282: 4765-4771. 10.1074/jbc.M609588200CrossRefPubMed Roy S, Tenniswood M: Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem. 2007, 282: 4765-4771. 10.1074/jbc.M609588200CrossRefPubMed
19.
20.
go back to reference Carew JS, Giles FJ, Nawrocki ST: Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008, 269: 7-17. 10.1016/j.canlet.2008.03.037CrossRefPubMed Carew JS, Giles FJ, Nawrocki ST: Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008, 269: 7-17. 10.1016/j.canlet.2008.03.037CrossRefPubMed
21.
go back to reference Farr GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D: Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol. 2000, 148: 691-702. 10.1083/jcb.148.4.691PubMedCentralCrossRefPubMed Farr GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D: Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol. 2000, 148: 691-702. 10.1083/jcb.148.4.691PubMedCentralCrossRefPubMed
22.
go back to reference Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q: Pharmacologic modulation of glycogen synthase kinase-3β promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 2005, 65: 9012-9020. 10.1158/0008-5472.CAN-05-1226CrossRefPubMed Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q: Pharmacologic modulation of glycogen synthase kinase-3β promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 2005, 65: 9012-9020. 10.1158/0008-5472.CAN-05-1226CrossRefPubMed
23.
go back to reference Olsson A, Manzl C, Strasser A, Villunger A: How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?. Cell Death Differ. 2007, 14: 1561-1575. 10.1038/sj.cdd.4402196CrossRefPubMed Olsson A, Manzl C, Strasser A, Villunger A: How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?. Cell Death Differ. 2007, 14: 1561-1575. 10.1038/sj.cdd.4402196CrossRefPubMed
Metadata
Title
GSK3β N-terminus binding to p53 promotes its acetylation
Authors
Tae-Yeon Eom
Richard S Jope
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2009
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-8-14

Other articles of this Issue 1/2009

Molecular Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine