Skip to main content
Top
Published in: Molecular Cancer 1/2008

Open Access 01-12-2008 | Research

Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients

Authors: Peyman Björklund, Daniel Lindberg, Göran Åkerström, Gunnar Westin

Published in: Molecular Cancer | Issue 1/2008

Login to get access

Abstract

Background

Aberrant accumulation of β-catenin plays an important role in a variety of human neoplasms. We recently reported accumulation of β-catenin in parathyroid adenomas from patients with primary hyperparathyroidism (pHPT). In CTNNB1 exon 3, we detected a stabilizing mutation (S37A) in 3 out of 20 analyzed adenomas. The aim of the present study was to determine the frequency and zygosity of mutations in CTNNB1 exon 3, and β-catenin accumulation in a large series of parathyroid adenomas of Swedish patients.

Results

The mutation S37A (TCT > GCT) was detected by direct DNA sequencing of PCR fragments in 6 out of 104 sporadic parathyroid adenomas (5.8%). Taking our previous study into account, a total of 9 out of 124 (7.3%) adenomas displayed the same mutation. The mutations were homozygous by DNA sequencing, restriction enzyme cleavage, and gene copy number determination using the GeneChip 500 K Mapping Array Set. All tumors analyzed by immunohistochemistry, including those with mutation, displayed aberrant β-catenin accumulation. Western blotting revealed a slightly higher expression level of β-catenin and nonphosphorylated active β-catenin in tumors with mutation compared to those without. Presence of the mutation was not related to distinct clinical characteristics.

Conclusion

Aberrant accumulation of β-catenin is very common in parathyroid tumors, and is caused by stabilizing homozygous mutation in 7.3% of Swedish pHPT patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Marx S: Hyperparathyroid and hypoparathyroid disorders. N Engl J Med. 2000, 343: 1863-1875. 10.1056/NEJM200012213432508CrossRefPubMed Marx S: Hyperparathyroid and hypoparathyroid disorders. N Engl J Med. 2000, 343: 1863-1875. 10.1056/NEJM200012213432508CrossRefPubMed
2.
go back to reference Arnold A, Shattuck TM, Mallya SM, Krebs LJ, Costa J, Gallagher J, Wild Y, Saucier K: Molecular pathogenesis of primary hyperparathyroidism. J Bone Miner Res. 2002, 17 (Suppl 2): N30-36.PubMed Arnold A, Shattuck TM, Mallya SM, Krebs LJ, Costa J, Gallagher J, Wild Y, Saucier K: Molecular pathogenesis of primary hyperparathyroidism. J Bone Miner Res. 2002, 17 (Suppl 2): N30-36.PubMed
3.
go back to reference Åkerström G, Hellman P: Primary hyperparathyroidism. Curr Opin Oncol. 2004, 16: 1-7. 10.1097/00001622-200401000-00002PubMed Åkerström G, Hellman P: Primary hyperparathyroidism. Curr Opin Oncol. 2004, 16: 1-7. 10.1097/00001622-200401000-00002PubMed
4.
go back to reference Åkerström G, Hellman P, Hessman O, Segersten U, Westin G: Parathyroid glands in calcium regulation and human disease. Ann N Y Acad Sci. 2005, 1040: 53-58. 10.1196/annals.1327.005CrossRefPubMed Åkerström G, Hellman P, Hessman O, Segersten U, Westin G: Parathyroid glands in calcium regulation and human disease. Ann N Y Acad Sci. 2005, 1040: 53-58. 10.1196/annals.1327.005CrossRefPubMed
5.
go back to reference Polakis P: The oncogenic activation of β-catenin. Curr Opin Genet Dev. 1999, 9: 15-21. 10.1016/S0959-437X(99)80003-3CrossRefPubMed Polakis P: The oncogenic activation of β-catenin. Curr Opin Genet Dev. 1999, 9: 15-21. 10.1016/S0959-437X(99)80003-3CrossRefPubMed
6.
go back to reference Lustig B, Behrens J: The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003, 129: 199-221.PubMed Lustig B, Behrens J: The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003, 129: 199-221.PubMed
7.
go back to reference Giles RH, van Es JH, Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003, 1653: 1-24.PubMed Giles RH, van Es JH, Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003, 1653: 1-24.PubMed
8.
go back to reference Polakis P: The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007, 17: 45-51. 10.1016/j.gde.2006.12.007CrossRefPubMed Polakis P: The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007, 17: 45-51. 10.1016/j.gde.2006.12.007CrossRefPubMed
9.
go back to reference Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ, Angers S, Moon RT: Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science. 2007, 316: 1043-1046. 10.1126/science/1141515CrossRefPubMed Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ, Angers S, Moon RT: Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science. 2007, 316: 1043-1046. 10.1126/science/1141515CrossRefPubMed
10.
go back to reference Björklund P, Åkerström G, Westin G: Accumulation of nonphosphorylated β-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007, 92: 338-344. 10.1210/jc.2006-1197CrossRefPubMed Björklund P, Åkerström G, Westin G: Accumulation of nonphosphorylated β-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007, 92: 338-344. 10.1210/jc.2006-1197CrossRefPubMed
11.
go back to reference Björklund P, Åkerström G, Westin G: An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/β-catenin signaling. PLoS Med. 2007, 4 (11): e328- 10.1371/journal.pmed.0040328PubMedCentralCrossRefPubMed Björklund P, Åkerström G, Westin G: An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/β-catenin signaling. PLoS Med. 2007, 4 (11): e328- 10.1371/journal.pmed.0040328PubMedCentralCrossRefPubMed
12.
go back to reference Ikeda S, Ishizaki Y, Shimizu Y, Fujimori M, Ojima Y, Okajima M, Sugino K, Asahara T: Immunohistochemistry of cyclin D1 and β-catenin, and mutational analysis of exon 3 of β-catenin gene in parathyroid tumors. Int J Oncol. 2002, 20: 463-466.PubMed Ikeda S, Ishizaki Y, Shimizu Y, Fujimori M, Ojima Y, Okajima M, Sugino K, Asahara T: Immunohistochemistry of cyclin D1 and β-catenin, and mutational analysis of exon 3 of β-catenin gene in parathyroid tumors. Int J Oncol. 2002, 20: 463-466.PubMed
13.
go back to reference Costa-Guda J, Arnold A: Absence of stabilizing mutations of β-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2007, 92: 1564-1566. 10.1210/jc.2006-2554CrossRefPubMed Costa-Guda J, Arnold A: Absence of stabilizing mutations of β-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2007, 92: 1564-1566. 10.1210/jc.2006-2554CrossRefPubMed
14.
go back to reference van Noort M, Meeldijk J, Zee van der R, Destree O, Clevers H: Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem. 2002, 277: 17901-17905. 10.1074/jbc.M111635200CrossRefPubMed van Noort M, Meeldijk J, Zee van der R, Destree O, Clevers H: Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem. 2002, 277: 17901-17905. 10.1074/jbc.M111635200CrossRefPubMed
15.
go back to reference Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T: Accumulation of β-catenin protein and mutations in exon 3 of β-catenin gene in gastrointestinal carcinoid tumor. Cancer Res. 2001, 61: 6656-6659.PubMed Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T: Accumulation of β-catenin protein and mutations in exon 3 of β-catenin gene in gastrointestinal carcinoid tumor. Cancer Res. 2001, 61: 6656-6659.PubMed
16.
go back to reference Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW: Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J Biol Chem. 1997, 272: 24735-24738. 10.1074/jbc.272.40.24735CrossRefPubMed Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW: Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J Biol Chem. 1997, 272: 24735-24738. 10.1074/jbc.272.40.24735CrossRefPubMed
17.
go back to reference Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-1792. 10.1126/science.275.5307.1790CrossRefPubMed Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-1792. 10.1126/science.275.5307.1790CrossRefPubMed
18.
go back to reference Williams BO, Barish GD, Klymkowsky MW, Varmus HE: A comparative evaluation of β-catenin and plakoglobin signaling activity. Oncogene. 2000, 19: 5720-5728. 10.1038/sj.onc.1203921CrossRefPubMed Williams BO, Barish GD, Klymkowsky MW, Varmus HE: A comparative evaluation of β-catenin and plakoglobin signaling activity. Oncogene. 2000, 19: 5720-5728. 10.1038/sj.onc.1203921CrossRefPubMed
19.
go back to reference Ilyas M, Tomlinson IPM, Rowan A, Pignatelli M, Bodmer WF: β-Catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA. 1997, 94: 10330-10334. 10.1073/pnas.94.19.10330PubMedCentralCrossRefPubMed Ilyas M, Tomlinson IPM, Rowan A, Pignatelli M, Bodmer WF: β-Catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA. 1997, 94: 10330-10334. 10.1073/pnas.94.19.10330PubMedCentralCrossRefPubMed
20.
go back to reference Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M, Toyota M, Tokino T, Hinoda Y, Imai K, Herman JG, Baylin SB: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004, 36: 417-422. 10.1038/ng1330CrossRefPubMed Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M, Toyota M, Tokino T, Hinoda Y, Imai K, Herman JG, Baylin SB: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004, 36: 417-422. 10.1038/ng1330CrossRefPubMed
21.
go back to reference Semba S, Kusumi R, Moriya T, Sasano H: Nuclear accumulation of β-catenin in human endocrine tumors: Association with Ki-67 (MIB-1) proliferative activity. Endocr Pathol. 2000, 11: 243-250. 10.1385/EP:11:3:243CrossRefPubMed Semba S, Kusumi R, Moriya T, Sasano H: Nuclear accumulation of β-catenin in human endocrine tumors: Association with Ki-67 (MIB-1) proliferative activity. Endocr Pathol. 2000, 11: 243-250. 10.1385/EP:11:3:243CrossRefPubMed
22.
go back to reference Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-1790. 10.1126/science.275.5307.1787CrossRefPubMed Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-1790. 10.1126/science.275.5307.1787CrossRefPubMed
23.
go back to reference Sparks AB, Morin PJ, Vogelstein B, Kinzler KW: Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998, 58: 1130-1134.PubMed Sparks AB, Morin PJ, Vogelstein B, Kinzler KW: Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998, 58: 1130-1134.PubMed
24.
go back to reference Omholt K, Platz A, Ringborg U, Hansson J: Cytoplasmic and nuclear accumulation of beta-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int J Cancer. 2001, 92: 839-842. 10.1002/ijc.1270CrossRefPubMed Omholt K, Platz A, Ringborg U, Hansson J: Cytoplasmic and nuclear accumulation of beta-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int J Cancer. 2001, 92: 839-842. 10.1002/ijc.1270CrossRefPubMed
25.
go back to reference Reifenberger J, Knobbe CB, Wolter M, Blaschke B, Schulte KW, Pietsch T, Ruzicka T, Reifenberger G: Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC. Int J Cancer. 2002, 100: 549-556. 10.1002/ijc.10512CrossRefPubMed Reifenberger J, Knobbe CB, Wolter M, Blaschke B, Schulte KW, Pietsch T, Ruzicka T, Reifenberger G: Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC. Int J Cancer. 2002, 100: 549-556. 10.1002/ijc.10512CrossRefPubMed
26.
go back to reference Pollock PM, Hayward N: Mutations in exon 3 of the beta-catenin gene are rare in melanoma cell lines. Melanoma Res. 2002, 12: 183-186. 10.1097/00008390-200204000-00013CrossRefPubMed Pollock PM, Hayward N: Mutations in exon 3 of the beta-catenin gene are rare in melanoma cell lines. Melanoma Res. 2002, 12: 183-186. 10.1097/00008390-200204000-00013CrossRefPubMed
27.
go back to reference Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C, Oord van den JJ: Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol. 2002, 15: 454-461. 10.1038/modpathol.3880546CrossRefPubMed Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C, Oord van den JJ: Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol. 2002, 15: 454-461. 10.1038/modpathol.3880546CrossRefPubMed
28.
go back to reference Johnson V, Volikos E, Halford SE, Eftekhar Sadat ET, Popat S, Talbot I, Truninger K, Martin J, Jass J, Houlston R, Atkin W, Tomlinson IPM, Silver ARJ: Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut. 2005, 54: 264-267. 10.1136/gut.2004.048132PubMedCentralCrossRefPubMed Johnson V, Volikos E, Halford SE, Eftekhar Sadat ET, Popat S, Talbot I, Truninger K, Martin J, Jass J, Houlston R, Atkin W, Tomlinson IPM, Silver ARJ: Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut. 2005, 54: 264-267. 10.1136/gut.2004.048132PubMedCentralCrossRefPubMed
29.
go back to reference Luchtenborg M, Weijenberg MP, Wark PA, Saritas AM, Roemen GM, van Muijen GN, de Bruine AP, Brandt van den PA, de Goeij AF: Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer. 2005, 5: 160- 10.1186/1471-2407-5-160PubMedCentralCrossRefPubMed Luchtenborg M, Weijenberg MP, Wark PA, Saritas AM, Roemen GM, van Muijen GN, de Bruine AP, Brandt van den PA, de Goeij AF: Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer. 2005, 5: 160- 10.1186/1471-2407-5-160PubMedCentralCrossRefPubMed
30.
go back to reference Thorstensen L, Lind GE, Lovig T, Diep CB, Meling GI, Rognum TO, Lothe RA: Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia. 2005, 7: 99-108. 10.1593/neo.04448PubMedCentralCrossRefPubMed Thorstensen L, Lind GE, Lovig T, Diep CB, Meling GI, Rognum TO, Lothe RA: Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia. 2005, 7: 99-108. 10.1593/neo.04448PubMedCentralCrossRefPubMed
Metadata
Title
Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients
Authors
Peyman Björklund
Daniel Lindberg
Göran Åkerström
Gunnar Westin
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2008
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-53

Other articles of this Issue 1/2008

Molecular Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine