Skip to main content
Top
Published in: Molecular Cancer 1/2005

Open Access 01-12-2005 | Research

Overcoming cisplatin resistance by mTOR inhibitor in lung cancer

Authors: Chunjing Wu, Medhi Wangpaichitr, Lynn Feun, Marcus Tien Kuo, Carlos Robles, Theodore Lampidis, Niramol Savaraj

Published in: Molecular Cancer | Issue 1/2005

Login to get access

Abstract

Background

Cisplatin resistance is complex and involves several different mechanisms. Employing cDNA microarray analysis, we have found that cisplatin resistant cells share the common characteristic of increase in ribosomal proteins and elongation factors. We hypothesize that in order to survive cisplatin treatment, cells have to synthesize DNA repair proteins, antiapoptotic proteins and growth-stimulating proteins. Thus, by blocking the translation of these proteins, one should be able to restore cisplatin sensitivity. We have studied the role of CCI-779, an ester analog of rapamycin which is known to inhibit translation by disabling mTOR, in restoring cisplatin sensitivity in a panel of cisplatin resistant cell lines. We have also determined the role of CCI-779 in P-gp1 and MRP1 mediated resistance.

Results

Our data show that CCI-779 possess antiproliferative effects in both cisplatin sensitive and resistant cell lines, but shows no effect in P-gp1 and MRP1 overexpressing cell lines. Importantly, CCI-779 at 10 ng/ml (less that 10% of the growth inhibitory effect) can increase the growth inhibition of cisplatin by 2.5–6 fold. Moreover, CCI-779 also enhances the apoptotic effect of cisplatin in cisplatin resistant cell lines. In these resistant cells, adding CCI-779 decreases the amount of 4E-BP phosphorylation and p-70S6 kinase phosphorylation as well as lower the amount of elongation factor while cisplatin alone has no effect. However, CCI-779 can only reverse P-gp mediated drug resistance at a higher dose(1 ug/ml).

Conclusion

We conclude that CCI-779 is able to restore cisplatin sensitivity in small cell lung cancer cell lines selected for cisplatin resistance as well as cell lines derived from patients who failed cisplatin. These findings can be further explored for future clinical use. On the other hand, CCI-779 at achievable clinical concentration, has no growth inhibitory effect in P-gp1 or MRP1 overexpressing cells. Furthermore, CCI-779 also appears to be a weak MDR1 reversal agent. Thus, it is not a candidate to use in MDR1 or MRP1 overexpressing cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vincent T. DeVita SHSAR: Cancer: Principles and Practice of Oncology Single Volume. Edited by: 6th . 2001, 1: Vincent T. DeVita SHSAR: Cancer: Principles and Practice of Oncology Single Volume. Edited by: 6th . 2001, 1:
2.
go back to reference Siddik ZH: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003, 22: 7265-7279. 10.1038/sj.onc.1206933CrossRefPubMed Siddik ZH: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003, 22: 7265-7279. 10.1038/sj.onc.1206933CrossRefPubMed
3.
go back to reference Lee KB, Parker RJ, Bohr V, Cornelison T, Reed E: Cisplatin sensitivity/resistance in UV repair-deficient Chinese hamster ovary cells of complementation groups 1 and 3. Carcinogenesis. 1993, 14: 2177-2180.CrossRefPubMed Lee KB, Parker RJ, Bohr V, Cornelison T, Reed E: Cisplatin sensitivity/resistance in UV repair-deficient Chinese hamster ovary cells of complementation groups 1 and 3. Carcinogenesis. 1993, 14: 2177-2180.CrossRefPubMed
4.
go back to reference Murata T, Haisa M, Uetsuka H, Nobuhisa T, Ookawa T, Tabuchi Y, Shirakawa Y, Yamatsuji T, Matsuoka J, Nishiyama M, Tanaka N, Naomoto Y: Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med. 2004, 13: 865-868.PubMed Murata T, Haisa M, Uetsuka H, Nobuhisa T, Ookawa T, Tabuchi Y, Shirakawa Y, Yamatsuji T, Matsuoka J, Nishiyama M, Tanaka N, Naomoto Y: Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med. 2004, 13: 865-868.PubMed
5.
go back to reference Asselin E, Mills GB, Tsang BK: XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res. 2001, 61: 1862-1868.PubMed Asselin E, Mills GB, Tsang BK: XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res. 2001, 61: 1862-1868.PubMed
6.
go back to reference Hayakawa J, Depatie C, Ohmichi M, Mercola D: The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair. J Biol Chem. 2003, 278: 20582-20592. 10.1074/jbc.M210992200CrossRefPubMed Hayakawa J, Depatie C, Ohmichi M, Mercola D: The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair. J Biol Chem. 2003, 278: 20582-20592. 10.1074/jbc.M210992200CrossRefPubMed
7.
go back to reference Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ: AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem. 2003, 278: 23432-23440. 10.1074/jbc.M302674200CrossRefPubMed Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ: AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem. 2003, 278: 23432-23440. 10.1074/jbc.M302674200CrossRefPubMed
8.
go back to reference Samimi G KKHAKSRHSB: Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol. 2004, 66: 25-32. 10.1124/mol.66.1.25CrossRefPubMed Samimi G KKHAKSRHSB: Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol. 2004, 66: 25-32. 10.1124/mol.66.1.25CrossRefPubMed
9.
go back to reference Samimi G SRKKHAKRMTMGMHSB: Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res. 2004, 10: 4661-4669.CrossRefPubMed Samimi G SRKKHAKRMTMGMHSB: Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res. 2004, 10: 4661-4669.CrossRefPubMed
10.
go back to reference Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW: Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci U S A. 1994, 91: 11477-11481.PubMedCentralCrossRefPubMed Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW: Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci U S A. 1994, 91: 11477-11481.PubMedCentralCrossRefPubMed
11.
go back to reference Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N: Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999, 13: 1422-1437.PubMedCentralCrossRefPubMed Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N: Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999, 13: 1422-1437.PubMedCentralCrossRefPubMed
12.
go back to reference Bjornsti MA, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4: 335-348. 10.1038/nrc1362CrossRefPubMed Bjornsti MA, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4: 335-348. 10.1038/nrc1362CrossRefPubMed
13.
go back to reference Garber K: Rapamycin's resurrection: a new way to target the cancer cell cycle. J Natl Cancer Inst. 2001, 93: 1517-1519.CrossRefPubMed Garber K: Rapamycin's resurrection: a new way to target the cancer cell cycle. J Natl Cancer Inst. 2001, 93: 1517-1519.CrossRefPubMed
14.
go back to reference Peralba JM, DeGraffenried L, Friedrichs W, Fulcher L, Grunwald V, Weiss G, Hidalgo M: Pharmacodynamic Evaluation of CCI-779, an Inhibitor of mTOR, in Cancer Patients. Clin Cancer Res. 2003, 9: 2887-2892.PubMed Peralba JM, DeGraffenried L, Friedrichs W, Fulcher L, Grunwald V, Weiss G, Hidalgo M: Pharmacodynamic Evaluation of CCI-779, an Inhibitor of mTOR, in Cancer Patients. Clin Cancer Res. 2003, 9: 2887-2892.PubMed
15.
go back to reference Arceci RJ, Stieglitz K, Bierer BE: Immunosuppressants FK506 and rapamycin function as reversal agents of the multidrug resistance phenotype. Blood. 1992, 80: 1528-1536.PubMed Arceci RJ, Stieglitz K, Bierer BE: Immunosuppressants FK506 and rapamycin function as reversal agents of the multidrug resistance phenotype. Blood. 1992, 80: 1528-1536.PubMed
16.
go back to reference Hoof T, Demmer A, Christians U, Tummler B: Reversal of multidrug resistance in Chinese hamster ovary cells by the immunosuppressive agent rapamycin. Eur J Pharmacol. 1993, 246: 53-58. 10.1016/0922-4106(93)90009-XCrossRefPubMed Hoof T, Demmer A, Christians U, Tummler B: Reversal of multidrug resistance in Chinese hamster ovary cells by the immunosuppressive agent rapamycin. Eur J Pharmacol. 1993, 246: 53-58. 10.1016/0922-4106(93)90009-XCrossRefPubMed
17.
go back to reference Ling V: Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol. 1997, 40: Suppl3-8. 10.1007/s002800051053.CrossRef Ling V: Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol. 1997, 40: Suppl3-8. 10.1007/s002800051053.CrossRef
18.
go back to reference Zhang W LV: Cell-cycle-dependent turnover of P-glycoprotein in multidrug-resistant cells. J Cell Physiol. 2000, 184: 17-26. 10.1002/(SICI)1097-4652(200007)184:1<17::AID-JCP2>3.0.CO;2-UCrossRefPubMed Zhang W LV: Cell-cycle-dependent turnover of P-glycoprotein in multidrug-resistant cells. J Cell Physiol. 2000, 184: 17-26. 10.1002/(SICI)1097-4652(200007)184:1<17::AID-JCP2>3.0.CO;2-UCrossRefPubMed
19.
go back to reference Hipfner DR DRGCSP: Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta. 1999, 1461: 359-376.CrossRefPubMed Hipfner DR DRGCSP: Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta. 1999, 1461: 359-376.CrossRefPubMed
20.
go back to reference Borst P, Evers R, Kool M, Wijnholds J: A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000, 92: 1295-1302. 10.1093/jnci/92.16.1295CrossRefPubMed Borst P, Evers R, Kool M, Wijnholds J: A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000, 92: 1295-1302. 10.1093/jnci/92.16.1295CrossRefPubMed
21.
go back to reference Loe DW OCJDRGCSP: Structure-activity studies of verapamil analogs that modulate transport of leukotriene C(4) and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun. 2000, 275: 795-803. 10.1006/bbrc.2000.3384CrossRefPubMed Loe DW OCJDRGCSP: Structure-activity studies of verapamil analogs that modulate transport of leukotriene C(4) and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun. 2000, 275: 795-803. 10.1006/bbrc.2000.3384CrossRefPubMed
22.
go back to reference Savaraj N, Wu C, Wangpaichitr M, Kuo MT, Lampidis T, Robles C, Furst AJ, Feun L: Overexpression of mutated MRP4 in cisplatin resistant small cell lung cancer cell line: collateral sensitivity to azidothymidine. Int J Oncol. 2003, 23: 173-179.PubMed Savaraj N, Wu C, Wangpaichitr M, Kuo MT, Lampidis T, Robles C, Furst AJ, Feun L: Overexpression of mutated MRP4 in cisplatin resistant small cell lung cancer cell line: collateral sensitivity to azidothymidine. Int J Oncol. 2003, 23: 173-179.PubMed
23.
go back to reference Brouty-Boye D, Kolonias D, Wu CJ, Savaraj N, Lampidis TJ: Relationship of multidrug resistance to rhodamine-123 selectivity between carcinoma and normal epithelial cells: taxol and vinblastine modulate drug efflux. Cancer Res. 1995, 55: 1633-1638.PubMed Brouty-Boye D, Kolonias D, Wu CJ, Savaraj N, Lampidis TJ: Relationship of multidrug resistance to rhodamine-123 selectivity between carcinoma and normal epithelial cells: taxol and vinblastine modulate drug efflux. Cancer Res. 1995, 55: 1633-1638.PubMed
24.
go back to reference Savaraj N WCJXRLTJFLKMT: Quantitative multidrug resistant associated protein gene expression by competitive reverse transcriptase polymerase chain reaction. Cell Pharm. 1996, 3: 349-354. Savaraj N WCJXRLTJFLKMT: Quantitative multidrug resistant associated protein gene expression by competitive reverse transcriptase polymerase chain reaction. Cell Pharm. 1996, 3: 349-354.
25.
go back to reference Xu J, Tyan T, Cedrone E, Savaraj N, Wang N: Detection of 11q13 amplification as the origin of a homogeneously staining region in small cell lung cancer by chromosome microdissection. Genes Chromosomes Cancer. 1996, 17: 172-178. 10.1002/(SICI)1098-2264(199611)17:3<172::AID-GCC5>3.0.CO;2-1CrossRefPubMed Xu J, Tyan T, Cedrone E, Savaraj N, Wang N: Detection of 11q13 amplification as the origin of a homogeneously staining region in small cell lung cancer by chromosome microdissection. Genes Chromosomes Cancer. 1996, 17: 172-178. 10.1002/(SICI)1098-2264(199611)17:3<172::AID-GCC5>3.0.CO;2-1CrossRefPubMed
26.
go back to reference Savaraj N, Lampidis TJ, Zhao JY, Wu CJ, Teeter LD, Kuo MT: Two multidrug-resistant Friend leukemic cell lines selected with different drugs exhibit overproduction of different P-glycoproteins. Cancer Invest. 1994, 12: 138-144.CrossRefPubMed Savaraj N, Lampidis TJ, Zhao JY, Wu CJ, Teeter LD, Kuo MT: Two multidrug-resistant Friend leukemic cell lines selected with different drugs exhibit overproduction of different P-glycoproteins. Cancer Invest. 1994, 12: 138-144.CrossRefPubMed
27.
go back to reference Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12: 502-513.PubMedCentralCrossRefPubMed Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12: 502-513.PubMedCentralCrossRefPubMed
28.
go back to reference Didziapetris R, Japertas P, Avdeef A, Petrauskas A: Classification analysis of P-glycoprotein substrate specificity. J Drug Target. 2003, 11: 391-406. 10.1080/10611860310001648248CrossRefPubMed Didziapetris R, Japertas P, Avdeef A, Petrauskas A: Classification analysis of P-glycoprotein substrate specificity. J Drug Target. 2003, 11: 391-406. 10.1080/10611860310001648248CrossRefPubMed
29.
go back to reference Chen J, Fang Y: A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol. 2002, 64. 10.1-1077.CrossRefPubMed Chen J, Fang Y: A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol. 2002, 64. 10.1-1077.CrossRefPubMed
30.
go back to reference Mita MM, Mita A, Rowinsky EK: The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther. 2003, 2: S169-77.CrossRefPubMed Mita MM, Mita A, Rowinsky EK: The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther. 2003, 2: S169-77.CrossRefPubMed
31.
go back to reference Huang S, Bjornsti MA, Houghton PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther. 2003, 2: 222-232.CrossRefPubMed Huang S, Bjornsti MA, Houghton PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther. 2003, 2: 222-232.CrossRefPubMed
32.
go back to reference Hidalgo M, Rowinsky EK: The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene. 2000, 19: 6680-6686. 10.1038/sj.onc.1204091CrossRefPubMed Hidalgo M, Rowinsky EK: The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene. 2000, 19: 6680-6686. 10.1038/sj.onc.1204091CrossRefPubMed
33.
go back to reference Gingras AC, Raught B, Sonenberg N: Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001, 15: 807-826. 10.1101/gad.887201CrossRefPubMed Gingras AC, Raught B, Sonenberg N: Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001, 15: 807-826. 10.1101/gad.887201CrossRefPubMed
34.
go back to reference Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. Embo J. 1997, 16: 3693-3704. 10.1093/emboj/16.12.3693PubMedCentralCrossRefPubMed Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. Embo J. 1997, 16: 3693-3704. 10.1093/emboj/16.12.3693PubMedCentralCrossRefPubMed
35.
go back to reference Chung J, Kuo CJ, Crabtree GR, Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992, 69: 1227-1236. 10.1016/0092-8674(92)90643-QCrossRefPubMed Chung J, Kuo CJ, Crabtree GR, Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992, 69: 1227-1236. 10.1016/0092-8674(92)90643-QCrossRefPubMed
36.
go back to reference Hershey JWB, Merrick WC: Pathway and mechanism of initiation of protein synthesis. Translational Control of Gene Expression. Edited by: Sonenberg N, Hershey JWB and Mathews MB. 2000, 33-88. Plainview, NY, Cold Spring Harbor Laboratory Press. Hershey JWB, Merrick WC: Pathway and mechanism of initiation of protein synthesis. Translational Control of Gene Expression. Edited by: Sonenberg N, Hershey JWB and Mathews MB. 2000, 33-88. Plainview, NY, Cold Spring Harbor Laboratory Press.
37.
go back to reference Tee AR, Proud CG: DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene. 2000, 19: 3021-3031. 10.1038/sj.onc.1203622CrossRefPubMed Tee AR, Proud CG: DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene. 2000, 19: 3021-3031. 10.1038/sj.onc.1203622CrossRefPubMed
38.
go back to reference Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, Leister C, Korth-Bradley J, Hanauske A, Armand JP: Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004, 22: 2336-2347. 10.1200/JCO.2004.08.116CrossRefPubMed Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, Leister C, Korth-Bradley J, Hanauske A, Armand JP: Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004, 22: 2336-2347. 10.1200/JCO.2004.08.116CrossRefPubMed
39.
go back to reference Hidalgo M: New target, new drug, old paradigm. J Clin Oncol. 2004, 22: 2270-2272. 10.1200/JCO.2004.03.918CrossRefPubMed Hidalgo M: New target, new drug, old paradigm. J Clin Oncol. 2004, 22: 2270-2272. 10.1200/JCO.2004.03.918CrossRefPubMed
40.
go back to reference Savaraj NWCJXRLTLSDESJFLG: Multidrug-resistant gene expression in small-cell lung cancer. Am J Clin Oncol. 1997, 20: 398-403. 10.1097/00000421-199708000-00016CrossRefPubMed Savaraj NWCJXRLTLSDESJFLG: Multidrug-resistant gene expression in small-cell lung cancer. Am J Clin Oncol. 1997, 20: 398-403. 10.1097/00000421-199708000-00016CrossRefPubMed
41.
go back to reference Berger W SUHPZTSEELCHAJGAMM: Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J Cancer Res Clin Oncol. 2005. Berger W SUHPZTSEELCHAJGAMM: Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J Cancer Res Clin Oncol. 2005.
42.
go back to reference Young LC CBGCSPDRGGJH: Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res. 2001, 7: 1798-1804.PubMed Young LC CBGCSPDRGGJH: Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res. 2001, 7: 1798-1804.PubMed
43.
go back to reference Miller DS, Fricker G, Drewe J: p-Glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J Pharmacol Exp Ther. 1997, 282: 440-444.PubMed Miller DS, Fricker G, Drewe J: p-Glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J Pharmacol Exp Ther. 1997, 282: 440-444.PubMed
44.
go back to reference Thimmaiah KN, Jayashree BS, Germain GS, Houghton PJ, Horton JK: Characterization of 2-chloro-N10-substituted phenoxazines for reversing multidrug resistance in cancer cells. Oncol Res. 1998, 10: 29-41.PubMed Thimmaiah KN, Jayashree BS, Germain GS, Houghton PJ, Horton JK: Characterization of 2-chloro-N10-substituted phenoxazines for reversing multidrug resistance in cancer cells. Oncol Res. 1998, 10: 29-41.PubMed
Metadata
Title
Overcoming cisplatin resistance by mTOR inhibitor in lung cancer
Authors
Chunjing Wu
Medhi Wangpaichitr
Lynn Feun
Marcus Tien Kuo
Carlos Robles
Theodore Lampidis
Niramol Savaraj
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2005
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-4-25

Other articles of this Issue 1/2005

Molecular Cancer 1/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine