Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment

Authors: Carlo Cenciarelli, Hany ES Marei, Manuela Zonfrillo, Pasquale Pierimarchi, Emanuela Paldino, Patrizia Casalbore, Armando Felsani, Angelo Luigi Vescovi, Giulio Maira, Annunziato Mangiola

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

Cancer stem cells (CSC) represent a rare fraction of cancer cells characterized by resistance to chemotherapy and radiation, therefore nowadays there is great need to develop new targeted therapies for brain tumors and our study aim to target pivotal transmembrane receptors such as Notch, EGFR and PDGFR, which are already under investigation in clinical trials setting for the treatment of Glioblastoma Multiforme (GBM).

Methods

MTS assay was performed to evaluate cells response to pharmacological treatments. Quantitative RT-PCR and Western blots were performed to state the expression of Notch1, EGFR and PDGFRα/β and the biological effects exerted by either single or combined targeted therapy in GBM CSC. GBM CSC invasive ability was tested in vitro in absence or presence of Notch and/or EGFR signaling inhibitors.

Results

In this study, we investigated gene expression and function of Notch1, EGFR and PDGFR to determine their role among GBM tumor core- (c-CSC) vs. peritumor tissue-derived cancer stem cells (p-CSC) of six cases of GBM. Notch inhibition significantly impaired cell growth of c-CSC compared to p-CSC pools, with no effects observed in cell cycle distribution, apoptosis and cell invasion assays. Instead, anti-EGFR therapy induced cell cycle arrest, sometimes associated with apoptosis and reduction of cell invasiveness in GBM CSC. In two cases, c-CSC pools were more sensitive to simultaneous anti-Notch and anti-EGFR treatment than either therapy alone compared to p-CSC, which were mostly resistant to treatment. We reported the overexpression of PDGFRα and its up-regulation following anti-EGFR therapy in GBM p-CSC compared to c-CSC. RNA interference of PDGFRα significantly reduced cell proliferation rate of p-CSC, while its pharmacological inhibition with Crenolanib impaired survival of both CSC pools, whose effects in combination with EGFR inhibition were maximized.

Conclusions

We have used different drugs combination to identify the more effective therapeutic targets for GBM CSC, particularly against GBM peritumor tissue-derived CSC, which are mostly resistant to treatments. Overall, our results provide the rationale for simultaneous targeting of EGFR and PDGFR, which would be beneficial in the treatment of GBM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA: Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001, 15: 1311-1333. 10.1101/gad.891601CrossRefPubMed Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA: Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001, 15: 1311-1333. 10.1101/gad.891601CrossRefPubMed
2.
go back to reference Aster JC, Blacklow SC: Targeting the Notch pathway: twists and turns on the road to rational therapeutics. J Clin Oncol. 2012, 30 (19): 2418-2420. 10.1200/JCO.2012.42.0992CrossRefPubMed Aster JC, Blacklow SC: Targeting the Notch pathway: twists and turns on the road to rational therapeutics. J Clin Oncol. 2012, 30 (19): 2418-2420. 10.1200/JCO.2012.42.0992CrossRefPubMed
3.
go back to reference Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L: Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010, 16 (12): 3141-3152. Review, 10.1158/1078-0432.CCR-09-2823PubMedCentralCrossRefPubMed Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L: Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010, 16 (12): 3141-3152. Review, 10.1158/1078-0432.CCR-09-2823PubMedCentralCrossRefPubMed
4.
go back to reference Takebe N, Nguyen D, Yang SX: Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014, 141 (2): 140-149. 10.1016/j.pharmthera.2013.09.005PubMedCentralCrossRefPubMed Takebe N, Nguyen D, Yang SX: Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014, 141 (2): 140-149. 10.1016/j.pharmthera.2013.09.005PubMedCentralCrossRefPubMed
5.
go back to reference Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA: Expression of Notch-1 and its ligands, delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005, 65 (6): 2353-2363. 10.1158/0008-5472.CAN-04-1890CrossRefPubMed Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA: Expression of Notch-1 and its ligands, delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005, 65 (6): 2353-2363. 10.1158/0008-5472.CAN-04-1890CrossRefPubMed
6.
go back to reference Dufraine J, Funahashi Y, Kitajewski J: Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene. 2008, 27 (38): 5132-5137. 10.1038/onc.2008.227PubMedCentralCrossRefPubMed Dufraine J, Funahashi Y, Kitajewski J: Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene. 2008, 27 (38): 5132-5137. 10.1038/onc.2008.227PubMedCentralCrossRefPubMed
7.
go back to reference Fortini ME: Gamma-secretase-mediated proteolysis in cell-surface-receptor signaling. Nat Rev Mol Cell Biol. 2002, 2 (9): 673-684.CrossRef Fortini ME: Gamma-secretase-mediated proteolysis in cell-surface-receptor signaling. Nat Rev Mol Cell Biol. 2002, 2 (9): 673-684.CrossRef
8.
go back to reference Ronchini C, Capobianco AJ: Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol. 2001, 21 (17): 5925-5934. 10.1128/MCB.21.17.5925-5934.2001PubMedCentralCrossRefPubMed Ronchini C, Capobianco AJ: Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol. 2001, 21 (17): 5925-5934. 10.1128/MCB.21.17.5925-5934.2001PubMedCentralCrossRefPubMed
9.
go back to reference Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, Von Boehmer H, Sicinki P: Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003, 4 (6): 451-461. 10.1016/S1535-6108(03)00301-5CrossRefPubMed Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, Von Boehmer H, Sicinki P: Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003, 4 (6): 451-461. 10.1016/S1535-6108(03)00301-5CrossRefPubMed
10.
go back to reference Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC: c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006, 20: 2096-2109. 10.1101/gad.1450406PubMedCentralCrossRefPubMed Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC: c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006, 20: 2096-2109. 10.1101/gad.1450406PubMedCentralCrossRefPubMed
11.
go back to reference Chen Y, Fischer WH, Gill GN: Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem. 1997, 272 (22): 14110-14114. 10.1074/jbc.272.22.14110CrossRefPubMed Chen Y, Fischer WH, Gill GN: Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem. 1997, 272 (22): 14110-14114. 10.1074/jbc.272.22.14110CrossRefPubMed
12.
go back to reference Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E: Glioblastoma subclasses can be defined by activity among signal transduction pathway and associated genomic alterations. PLoS One. 2009, 4 (11): e7752- 10.1371/journal.pone.0007752PubMedCentralCrossRefPubMed Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E: Glioblastoma subclasses can be defined by activity among signal transduction pathway and associated genomic alterations. PLoS One. 2009, 4 (11): e7752- 10.1371/journal.pone.0007752PubMedCentralCrossRefPubMed
13.
go back to reference Le Mercier M, Hastir D, Moles Lopez X, De Neve N, Maris C, Trepant AL, Rorive S, Decaestecker C, Salmon I: A simplified approach for the molecular classification of Glioblastomas. PLoS One. 2012, 7 (9): e45475- 10.1371/journal.pone.0045475PubMedCentralCrossRefPubMed Le Mercier M, Hastir D, Moles Lopez X, De Neve N, Maris C, Trepant AL, Rorive S, Decaestecker C, Salmon I: A simplified approach for the molecular classification of Glioblastomas. PLoS One. 2012, 7 (9): e45475- 10.1371/journal.pone.0045475PubMedCentralCrossRefPubMed
14.
go back to reference Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR: Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat. 2006, 32: 74-89. 10.1016/j.ctrv.2006.01.003.CrossRef Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR: Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat. 2006, 32: 74-89. 10.1016/j.ctrv.2006.01.003.CrossRef
15.
go back to reference Gan HK, Kaye AH, Luwor RB: The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009, 16: 748-754. 10.1016/j.jocn.2008.12.005CrossRefPubMed Gan HK, Kaye AH, Luwor RB: The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009, 16: 748-754. 10.1016/j.jocn.2008.12.005CrossRefPubMed
16.
go back to reference , : The Cancer Genome Atlas project. Comprehensive genomic characterization defines human glioblastoma genes and core pathway. Nature. 2008, 455: 1061-1068. 10.1038/nature07385CrossRef , : The Cancer Genome Atlas project. Comprehensive genomic characterization defines human glioblastoma genes and core pathway. Nature. 2008, 455: 1061-1068. 10.1038/nature07385CrossRef
17.
go back to reference Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ: A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A. 1994, 91: 7727-7731. 10.1073/pnas.91.16.7727PubMedCentralCrossRefPubMed Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ: A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A. 1994, 91: 7727-7731. 10.1073/pnas.91.16.7727PubMedCentralCrossRefPubMed
18.
go back to reference Dai C, Celestino JC, Okada Y, Luois DN, Fuller GN, Holland EC: PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001, 15: 1913-1925. 10.1101/gad.903001PubMedCentralCrossRefPubMed Dai C, Celestino JC, Okada Y, Luois DN, Fuller GN, Holland EC: PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001, 15: 1913-1925. 10.1101/gad.903001PubMedCentralCrossRefPubMed
19.
go back to reference Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P: Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci. 2006, 26: 6781-6790. 10.1523/JNEUROSCI.0514-06.2006CrossRefPubMed Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P: Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci. 2006, 26: 6781-6790. 10.1523/JNEUROSCI.0514-06.2006CrossRefPubMed
20.
go back to reference Fredriksson L, Li H, Eriksson U: The PDGF family: four gene products forms five dimeric isoforms. Cytokine Growth Factor Rev. 2004, 15: 197-204. 10.1016/j.cytogfr.2004.03.007CrossRefPubMed Fredriksson L, Li H, Eriksson U: The PDGF family: four gene products forms five dimeric isoforms. Cytokine Growth Factor Rev. 2004, 15: 197-204. 10.1016/j.cytogfr.2004.03.007CrossRefPubMed
21.
go back to reference Blume-Jensen P, Hunter T: Oncogenic kinase signalling. Nature. 2001, 411 (6835): 355-365. 10.1038/35077225CrossRefPubMed Blume-Jensen P, Hunter T: Oncogenic kinase signalling. Nature. 2001, 411 (6835): 355-365. 10.1038/35077225CrossRefPubMed
22.
go back to reference Kim Y, Kim E, Wu Q, Guryanova O, Hitomi M, Lathia JD, Serwanski D, Sloan AE, Weil RJ, Lee J, Nishiyama A, Bao S, Hjelmeland AB, Rich JN: Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes Dev. 2012, 26 (11): 1247-1262. 10.1101/gad.193565.112PubMedCentralCrossRefPubMed Kim Y, Kim E, Wu Q, Guryanova O, Hitomi M, Lathia JD, Serwanski D, Sloan AE, Weil RJ, Lee J, Nishiyama A, Bao S, Hjelmeland AB, Rich JN: Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes Dev. 2012, 26 (11): 1247-1262. 10.1101/gad.193565.112PubMedCentralCrossRefPubMed
23.
go back to reference Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I, Villa GR, Tanaka K, Nael A, Yang H, Dang J, Vinters HV, Yong WH, Flagg M, Tamanoi F, Sasayama T, James CD, Kornblum HI, Cloughesy TF, Cavenee WK, Bensinger SJ, Mischel PS: De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013, 3 (5): 534-547. 10.1158/2159-8290.CD-12-0502PubMedCentralCrossRefPubMed Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I, Villa GR, Tanaka K, Nael A, Yang H, Dang J, Vinters HV, Yong WH, Flagg M, Tamanoi F, Sasayama T, James CD, Kornblum HI, Cloughesy TF, Cavenee WK, Bensinger SJ, Mischel PS: De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013, 3 (5): 534-547. 10.1158/2159-8290.CD-12-0502PubMedCentralCrossRefPubMed
24.
go back to reference Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalprà L, Vescovi AL: Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene. 2009, 28 (15): 1807-1811. 10.1038/onc.2009.27CrossRefPubMed Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalprà L, Vescovi AL: Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene. 2009, 28 (15): 1807-1811. 10.1038/onc.2009.27CrossRefPubMed
25.
go back to reference Mangiola A, Saulnier N, De Bonis P, Orteschi D, Sica G, Lama G, Pettorini BL, Sabatino G, Zollino M, Lauriola L, Colabianchi A, Proietti G, Kovacs G, Maira G, Anile C: Gene expression profile of Glioblastoma peritumoral tissue: an ex vivo study. PLoS One. 2013, 8 (3): e57145- 10.1371/journal.pone.0057145PubMedCentralCrossRefPubMed Mangiola A, Saulnier N, De Bonis P, Orteschi D, Sica G, Lama G, Pettorini BL, Sabatino G, Zollino M, Lauriola L, Colabianchi A, Proietti G, Kovacs G, Maira G, Anile C: Gene expression profile of Glioblastoma peritumoral tissue: an ex vivo study. PLoS One. 2013, 8 (3): e57145- 10.1371/journal.pone.0057145PubMedCentralCrossRefPubMed
26.
go back to reference Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009, 19: 633-647.CrossRef Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009, 19: 633-647.CrossRef
27.
go back to reference Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA: Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol. 2009, 184 (1): 101-112. 10.1083/jcb.200805155PubMedCentralCrossRefPubMed Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA: Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol. 2009, 184 (1): 101-112. 10.1083/jcb.200805155PubMedCentralCrossRefPubMed
28.
go back to reference Chen J, Huang Q, Wang F: Inhibition of FoxO1 nuclear exclusion prevents metastasis of Glioblastoma. Tumour Biol. 2014, Apr 27. (Epub ahead of print), Chen J, Huang Q, Wang F: Inhibition of FoxO1 nuclear exclusion prevents metastasis of Glioblastoma. Tumour Biol. 2014, Apr 27. (Epub ahead of print),
29.
go back to reference Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, Qiu Y, Xie Q, Ge J: Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-κB signaling via AKT activation. Cancer Sci. 2012, 103 (2): 181-190. 10.1111/j.1349-7006.2011.02154.xCrossRefPubMed Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, Qiu Y, Xie Q, Ge J: Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-κB signaling via AKT activation. Cancer Sci. 2012, 103 (2): 181-190. 10.1111/j.1349-7006.2011.02154.xCrossRefPubMed
30.
go back to reference Vivanco I, Mellinghoff IK: Epidermal growth factor receptor inhibitors in oncology. Curr Opin Oncol. 2010, 22 (6): 573-578. 10.1097/CCO.0b013e32833edbdfCrossRefPubMed Vivanco I, Mellinghoff IK: Epidermal growth factor receptor inhibitors in oncology. Curr Opin Oncol. 2010, 22 (6): 573-578. 10.1097/CCO.0b013e32833edbdfCrossRefPubMed
31.
go back to reference Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH, Suh JH, Toms SA, Vogelbaum MA, Weil RJ, Elson P, Barnett GH: Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol. 2010, 98 (1): 93-99. 10.1007/s11060-009-0067-2CrossRefPubMed Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH, Suh JH, Toms SA, Vogelbaum MA, Weil RJ, Elson P, Barnett GH: Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol. 2010, 98 (1): 93-99. 10.1007/s11060-009-0067-2CrossRefPubMed
32.
go back to reference Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006, 5: 67- 10.1186/1476-4598-5-67PubMedCentralCrossRefPubMed Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006, 5: 67- 10.1186/1476-4598-5-67PubMedCentralCrossRefPubMed
33.
go back to reference Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010, 28 (1): 5-16.PubMedCentralPubMed Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010, 28 (1): 5-16.PubMedCentralPubMed
34.
go back to reference Krop I, Demuth T, Guthrie T, Wen PY, Mason WP, Chinnaiyan P, Butowski N, Groves MD, Kesari S, Freedman SJ, Blackman S, Watters J, Loboda A, Podtelezhnikov A, Lunceford J, Chen C, Giannotti M, Hing J, Beckman R: Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol. 2012, 30 (19): 2307-2313. 10.1200/JCO.2011.39.1540CrossRefPubMed Krop I, Demuth T, Guthrie T, Wen PY, Mason WP, Chinnaiyan P, Butowski N, Groves MD, Kesari S, Freedman SJ, Blackman S, Watters J, Loboda A, Podtelezhnikov A, Lunceford J, Chen C, Giannotti M, Hing J, Beckman R: Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol. 2012, 30 (19): 2307-2313. 10.1200/JCO.2011.39.1540CrossRefPubMed
35.
go back to reference Alentorn A, Marie Y, Carpentier C, Boisselier B, Giry M, Labussiere M, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre JY, Idbaih A: Prevalence, clinico-pathological value, and cooccurrence of PDGFRA abnormalities in diffuse gliomas. Neuro Oncol. 2012, 14 (11): 1393-1403. 10.1093/neuonc/nos217PubMedCentralCrossRefPubMed Alentorn A, Marie Y, Carpentier C, Boisselier B, Giry M, Labussiere M, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre JY, Idbaih A: Prevalence, clinico-pathological value, and cooccurrence of PDGFRA abnormalities in diffuse gliomas. Neuro Oncol. 2012, 14 (11): 1393-1403. 10.1093/neuonc/nos217PubMedCentralCrossRefPubMed
36.
go back to reference Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y: Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol. 2004, 6 (6): 547-554. 10.1038/ncb1138CrossRefPubMed Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y: Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol. 2004, 6 (6): 547-554. 10.1038/ncb1138CrossRefPubMed
37.
go back to reference Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM, Pfeffer LM: Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem. 2013, 288 (36): 26167-26176. 10.1074/jbc.M113.477950PubMedCentralCrossRefPubMed Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM, Pfeffer LM: Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem. 2013, 288 (36): 26167-26176. 10.1074/jbc.M113.477950PubMedCentralCrossRefPubMed
38.
go back to reference Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, DingL GT, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G: Cancer Genome Atlas Research Network: integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010, 17 (1): 98-110. 10.1016/j.ccr.2009.12.020PubMedCentralCrossRefPubMed Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, DingL GT, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G: Cancer Genome Atlas Research Network: integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010, 17 (1): 98-110. 10.1016/j.ccr.2009.12.020PubMedCentralCrossRefPubMed
39.
go back to reference Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA: Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008, 29 (5): 918-925. 10.1093/carcin/bgn079PubMedCentralCrossRefPubMed Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA: Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008, 29 (5): 918-925. 10.1093/carcin/bgn079PubMedCentralCrossRefPubMed
40.
go back to reference Xu P, Qiu M, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H, Pu P: The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol. 2010, 97 (1): 41-51. 10.1007/s11060-009-0007-1CrossRefPubMed Xu P, Qiu M, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H, Pu P: The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol. 2010, 97 (1): 41-51. 10.1007/s11060-009-0007-1CrossRefPubMed
41.
go back to reference Ghosh MK, Sharma P, Harbor PC, Rahaman SO, Haque SJ: PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene. 2005, 24 (49): 7290-7300. 10.1038/sj.onc.1208894CrossRefPubMed Ghosh MK, Sharma P, Harbor PC, Rahaman SO, Haque SJ: PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene. 2005, 24 (49): 7290-7300. 10.1038/sj.onc.1208894CrossRefPubMed
42.
go back to reference Liu Q, Li G, Li R, Shen J, He Q, Deng L, Zhang C, Zhang J: IL-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines. J Neurooncol. 2010, 100 (2): 165-176. 10.1007/s11060-010-0158-0CrossRefPubMed Liu Q, Li G, Li R, Shen J, He Q, Deng L, Zhang C, Zhang J: IL-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines. J Neurooncol. 2010, 100 (2): 165-176. 10.1007/s11060-010-0158-0CrossRefPubMed
43.
go back to reference Uhrbom L, Hesselager G, Nister M, Westermark B: Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 1998, 58: 5275-5279.PubMed Uhrbom L, Hesselager G, Nister M, Westermark B: Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 1998, 58: 5275-5279.PubMed
44.
go back to reference Maxwell M, Naber SP, Wolfe HJ, Galanopoulos T, Hedley-Whyte ET, Black PM, Antoniades HN: Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest. 1990, 86: 131-140. 10.1172/JCI114675PubMedCentralCrossRefPubMed Maxwell M, Naber SP, Wolfe HJ, Galanopoulos T, Hedley-Whyte ET, Black PM, Antoniades HN: Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest. 1990, 86: 131-140. 10.1172/JCI114675PubMedCentralCrossRefPubMed
45.
go back to reference Plate KH, Breier G, Farrell CL, Risau W: Platelet-derived growth factor receptor-b is induced during tumor development and upregulated during tumor progression in endothe- lial cells in human gliomas. Lab Invest. 1992, 67: 529-534.PubMed Plate KH, Breier G, Farrell CL, Risau W: Platelet-derived growth factor receptor-b is induced during tumor development and upregulated during tumor progression in endothe- lial cells in human gliomas. Lab Invest. 1992, 67: 529-534.PubMed
46.
go back to reference Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, Depinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, Depinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707CrossRefPubMed
47.
go back to reference Feng H, Liu KW, Guo P, Zhang P, Cheng T, McNiven MA, Johnson GR, Hu B, Cheng SY: Dynamin 2 mediates PDGFRα-SHP-2-promoted glioblastoma growth and invasion. Oncogene. 2012, 31 (21): 2691-2702. 10.1038/onc.2011.436PubMedCentralCrossRefPubMed Feng H, Liu KW, Guo P, Zhang P, Cheng T, McNiven MA, Johnson GR, Hu B, Cheng SY: Dynamin 2 mediates PDGFRα-SHP-2-promoted glioblastoma growth and invasion. Oncogene. 2012, 31 (21): 2691-2702. 10.1038/onc.2011.436PubMedCentralCrossRefPubMed
48.
go back to reference Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, Leversha MA, Mikkelsen T, Brennan CW: Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A. 2012, 109 (8): 3041-3046. 10.1073/pnas.1114033109PubMedCentralCrossRefPubMed Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, Leversha MA, Mikkelsen T, Brennan CW: Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A. 2012, 109 (8): 3041-3046. 10.1073/pnas.1114033109PubMedCentralCrossRefPubMed
49.
go back to reference Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, Chin L, DePinho RA: Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007, 318 (5848): 287-290. 10.1126/science.1142946CrossRefPubMed Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, Chin L, DePinho RA: Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007, 318 (5848): 287-290. 10.1126/science.1142946CrossRefPubMed
50.
go back to reference Lama G, Angelucci C, Recchia F, Sica G: Combined effects of 13-cis-retinoic acid, tamoxifen and interferon on the growth of human breast cancer cells. Cancer Lett. 1996, 100 (1–2): 181-189. Erratum in: Cancer Lett 1996, 103 (2): 243,CrossRefPubMed Lama G, Angelucci C, Recchia F, Sica G: Combined effects of 13-cis-retinoic acid, tamoxifen and interferon on the growth of human breast cancer cells. Cancer Lett. 1996, 100 (1–2): 181-189. Erratum in: Cancer Lett 1996, 103 (2): 243,CrossRefPubMed
Metadata
Title
PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment
Authors
Carlo Cenciarelli
Hany ES Marei
Manuela Zonfrillo
Pasquale Pierimarchi
Emanuela Paldino
Patrizia Casalbore
Armando Felsani
Angelo Luigi Vescovi
Giulio Maira
Annunziato Mangiola
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-247

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine