Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer

Authors: Ayesha N Shajahan-Haq, Katherine L Cook, Jessica L Schwartz-Roberts, Ahreej E Eltayeb, Diane M Demas, Anni M Warri, Caroline O B Facey, Leena A Hilakivi-Clarke, Robert Clarke

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

About 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to tolerate stress more efficiently than in sensitive cells. While the precise mechanism remains unclear, the UPR can trigger both pro-survival and pro-death outcomes that depend on the nature and magnitude of the stress. In this study, we identified MYC, an oncoprotein that is upregulated in endocrine resistant breast cancer, as a regulator of the UPR in glucose-deprived conditions.

Methods

ER+ human breast cancer cell lines (LCC1, LCC1, LY2 and LCC9) and rat mammary tumors were used to confirm upregulation of MYC in endocrine resistance. To evaluate functional relevance of proteins, siRNA-mediated inhibition or small molecule inhibitors were used. Cell density/number was evaluated with crystal violet assay; cell cycle and apoptosis were measured by flow cytometry. Relative quantification of glutamine metabolites were determined by mass spectrometry. Signaling molecules of the UPR, apoptosis or autophagy pathways were investigated by western blotting.

Results

Increased MYC function in resistant cells correlated with increased dependency on glutamine and glucose for survival. Inhibition of MYC reduced cell growth and uptake of both glucose and glutamine in resistant cells. Interestingly, in glucose-deprived conditions, glutamine induced apoptosis and necrosis, arrested autophagy, and triggered the unfolded protein response (UPR) though GRP78-IRE1α with two possible outcomes: (i) inhibition of cell growth by JNK activation in most cells and, (ii) promotion of cell growth by spliced XBP1 in the minority of cells. These disparate effects are regulated, at different signaling junctions, by MYC more robustly in resistant cells.

Conclusions

Endocrine resistant cells overexpress MYC and are better adapted to withstand periods of glucose deprivation and can use glutamine in the short term to maintain adequate metabolism to support cell survival. Our findings reveal a unique role for MYC in regulating cell fate through the UPR, and suggest that targeting glutamine metabolism may be a novel strategy in endocrine resistant breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clarke R, Skaar T, Leonessa F, Brankin B, James M, Brunner N, Lippman ME: Acquisition of an antiestrogen-resistant phenotype in breast cancer: role of cellular and molecular mechanisms. Cancer Treat Res. 1996, 87: 263-283. 10.1007/978-1-4613-1267-3_11CrossRefPubMed Clarke R, Skaar T, Leonessa F, Brankin B, James M, Brunner N, Lippman ME: Acquisition of an antiestrogen-resistant phenotype in breast cancer: role of cellular and molecular mechanisms. Cancer Treat Res. 1996, 87: 263-283. 10.1007/978-1-4613-1267-3_11CrossRefPubMed
2.
go back to reference Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O’Brien K, Wang Y, Hilakivi-Clarke LA: Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene. 2003, 22: 7316-7339. 10.1038/sj.onc.1206937CrossRefPubMed Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O’Brien K, Wang Y, Hilakivi-Clarke LA: Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene. 2003, 22: 7316-7339. 10.1038/sj.onc.1206937CrossRefPubMed
3.
go back to reference Amati B, Alevizopoulos K, Vlach J: Myc and the cell cycle. Front Biosci. 1998, 3: d250-d268.PubMed Amati B, Alevizopoulos K, Vlach J: Myc and the cell cycle. Front Biosci. 1998, 3: d250-d268.PubMed
6.
go back to reference Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS: Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol. 2007, 82: 85-90. 10.1016/j.yexmp.2006.09.001CrossRefPubMed Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS: Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol. 2007, 82: 85-90. 10.1016/j.yexmp.2006.09.001CrossRefPubMed
7.
go back to reference Blancato J, Singh B, Liu A, Liao DJ, Dickson RB: Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004, 90: 1612-1619. 10.1038/sj.bjc.6601703PubMedCentralCrossRefPubMed Blancato J, Singh B, Liu A, Liao DJ, Dickson RB: Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004, 90: 1612-1619. 10.1038/sj.bjc.6601703PubMedCentralCrossRefPubMed
8.
go back to reference Deming SL, Nass SJ, Dickson RB, Trock BJ: C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000, 83: 1688-1695. 10.1054/bjoc.2000.1522PubMedCentralCrossRefPubMed Deming SL, Nass SJ, Dickson RB, Trock BJ: C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000, 83: 1688-1695. 10.1054/bjoc.2000.1522PubMedCentralCrossRefPubMed
9.
go back to reference McNeil CM, Sergio CM, Anderson LR, Inman CK, Eggleton SA, Murphy NC, Millar EK, Crea P, Kench JG, Alles MC, Gardiner-Garden M, Ormandy CJ, Butt AJ, Henshall SM, Musgrove EA, Sutherland RL: c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol. 2006, 102: 147-155. 10.1016/j.jsbmb.2006.09.028CrossRefPubMed McNeil CM, Sergio CM, Anderson LR, Inman CK, Eggleton SA, Murphy NC, Millar EK, Crea P, Kench JG, Alles MC, Gardiner-Garden M, Ormandy CJ, Butt AJ, Henshall SM, Musgrove EA, Sutherland RL: c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol. 2006, 102: 147-155. 10.1016/j.jsbmb.2006.09.028CrossRefPubMed
10.
go back to reference Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M, Gonzalez-Angulo AM, Mills GB, Miller WR, Wu H, Shyr Y, Arteaga CL: A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res. 2011, 17: 2024-2034. 10.1158/1078-0432.CCR-10-2567PubMedCentralCrossRefPubMed Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M, Gonzalez-Angulo AM, Mills GB, Miller WR, Wu H, Shyr Y, Arteaga CL: A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res. 2011, 17: 2024-2034. 10.1158/1078-0432.CCR-10-2567PubMedCentralCrossRefPubMed
11.
go back to reference Dang CV, Lewis BC: Role of oncogenic transcription factor c-Myc in cell cycle regulation, apoptosis and metabolism. J Biomed Sci. 1997, 4: 269-278. 10.1007/BF02258350CrossRefPubMed Dang CV, Lewis BC: Role of oncogenic transcription factor c-Myc in cell cycle regulation, apoptosis and metabolism. J Biomed Sci. 1997, 4: 269-278. 10.1007/BF02258350CrossRefPubMed
12.
go back to reference Nair SK, Burley SK: X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003, 112: 193-205. 10.1016/S0092-8674(02)01284-9CrossRefPubMed Nair SK, Burley SK: X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003, 112: 193-205. 10.1016/S0092-8674(02)01284-9CrossRefPubMed
13.
go back to reference Dang CV: Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011, 76: 369-374. 10.1101/sqb.2011.76.011296CrossRefPubMed Dang CV: Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011, 76: 369-374. 10.1101/sqb.2011.76.011296CrossRefPubMed
14.
go back to reference Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009, 458: 762-765. 10.1038/nature07823PubMedCentralCrossRefPubMed Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009, 458: 762-765. 10.1038/nature07823PubMedCentralCrossRefPubMed
16.
go back to reference Ward PS, Thompson CB: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012, 21: 297-308. 10.1016/j.ccr.2012.02.014PubMedCentralCrossRefPubMed Ward PS, Thompson CB: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012, 21: 297-308. 10.1016/j.ccr.2012.02.014PubMedCentralCrossRefPubMed
17.
go back to reference Brunner N, Boulay V, Fojo A, Freter CE, Lippman ME, Clarke R: Acquisition of hormone-independent growth in MCF-7 cells is accompanied by increased expression of estrogen-regulated genes but without detectable DNA amplifications. Cancer Res. 1993, 53: 283-290.PubMed Brunner N, Boulay V, Fojo A, Freter CE, Lippman ME, Clarke R: Acquisition of hormone-independent growth in MCF-7 cells is accompanied by increased expression of estrogen-regulated genes but without detectable DNA amplifications. Cancer Res. 1993, 53: 283-290.PubMed
18.
go back to reference Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, Frandsen T, Spang-Thomsen M, Fuqua SA, Clarke R: MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182, 780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res. 1997, 57: 3486-3493.PubMed Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, Frandsen T, Spang-Thomsen M, Fuqua SA, Clarke R: MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182, 780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res. 1997, 57: 3486-3493.PubMed
19.
go back to reference Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R: Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem. 2007, 282: 5934-5943. 10.1074/jbc.M608857200CrossRefPubMed Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R: Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem. 2007, 282: 5934-5943. 10.1074/jbc.M608857200CrossRefPubMed
20.
go back to reference Shajahan AN, Dobbin ZC, Hickman FE, Dakshanamurthy S, Clarke R: Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK). J Biol Chem. 2012, 287: 17682-17692. 10.1074/jbc.M111.304022PubMedCentralCrossRefPubMed Shajahan AN, Dobbin ZC, Hickman FE, Dakshanamurthy S, Clarke R: Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK). J Biol Chem. 2012, 287: 17682-17692. 10.1074/jbc.M111.304022PubMedCentralCrossRefPubMed
21.
go back to reference Vindelov LL, Christensen IJ, Nissen NI: A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983, 3: 323-327. 10.1002/cyto.990030503CrossRefPubMed Vindelov LL, Christensen IJ, Nissen NI: A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983, 3: 323-327. 10.1002/cyto.990030503CrossRefPubMed
22.
go back to reference Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT, El-Deiry WS: Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol. 2004, 24: 8541-8555. 10.1128/MCB.24.19.8541-8555.2004PubMedCentralCrossRefPubMed Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT, El-Deiry WS: Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol. 2004, 24: 8541-8555. 10.1128/MCB.24.19.8541-8555.2004PubMedCentralCrossRefPubMed
23.
go back to reference Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R: Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 2012, 72: 3337-3349. 10.1158/0008-5472.CAN-12-0269PubMedCentralCrossRefPubMed Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R: Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 2012, 72: 3337-3349. 10.1158/0008-5472.CAN-12-0269PubMedCentralCrossRefPubMed
24.
go back to reference Sheikh KD, Khanna S, Byers SW, Fornace A, Cheema AK: Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J Biomol Tech. 2011, 22: 1-4.PubMedCentralPubMed Sheikh KD, Khanna S, Byers SW, Fornace A, Cheema AK: Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J Biomol Tech. 2011, 22: 1-4.PubMedCentralPubMed
25.
go back to reference Romanelli S, Perego P, Pratesi G, Carenini N, Tortoreto M, Zunino F: In vitro and in vivo interaction between cisplatin and topotecan in ovarian carcinoma systems. Cancer Chemother Pharmacol. 1998, 41: 385-390. 10.1007/s002800050755CrossRefPubMed Romanelli S, Perego P, Pratesi G, Carenini N, Tortoreto M, Zunino F: In vitro and in vivo interaction between cisplatin and topotecan in ovarian carcinoma systems. Cancer Chemother Pharmacol. 1998, 41: 385-390. 10.1007/s002800050755CrossRefPubMed
26.
go back to reference Musgrove EA, Sergio CM, Loi S, Inman CK, Anderson LR, Alles MC, Pinese M, Caldon CE, Schutte J, Gardiner-Garden M, Ormandy CJ, McArthur G, Butt AJ, Sutherland RL: Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One. 2008, 3: e2987- 10.1371/journal.pone.0002987PubMedCentralCrossRefPubMed Musgrove EA, Sergio CM, Loi S, Inman CK, Anderson LR, Alles MC, Pinese M, Caldon CE, Schutte J, Gardiner-Garden M, Ormandy CJ, McArthur G, Butt AJ, Sutherland RL: Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One. 2008, 3: e2987- 10.1371/journal.pone.0002987PubMedCentralCrossRefPubMed
27.
go back to reference Cook KL, Clarke PA, Parmar J, Hu R, Schwartz-Roberts JL, Abu-Asab M, Wärri A, Baumann WT, Clarke R: Knockdown of estrogen receptor-alpha induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. FASEB J. 2014, 72: 3337-3349. Cook KL, Clarke PA, Parmar J, Hu R, Schwartz-Roberts JL, Abu-Asab M, Wärri A, Baumann WT, Clarke R: Knockdown of estrogen receptor-alpha induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. FASEB J. 2014, 72: 3337-3349.
28.
go back to reference Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL: Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc-Max disruptor, 10058–F4 [Z, E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol. 2009, 63: 615-625. 10.1007/s00280-008-0774-yPubMedCentralCrossRefPubMed Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL: Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc-Max disruptor, 10058–F4 [Z, E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol. 2009, 63: 615-625. 10.1007/s00280-008-0774-yPubMedCentralCrossRefPubMed
29.
go back to reference Crawford AC, Riggins RB, Shajahan AN, Zwart A, Clarke R: Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS One. 2010, 5: e8604- 10.1371/journal.pone.0008604PubMedCentralCrossRefPubMed Crawford AC, Riggins RB, Shajahan AN, Zwart A, Clarke R: Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS One. 2010, 5: e8604- 10.1371/journal.pone.0008604PubMedCentralCrossRefPubMed
30.
go back to reference Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF: Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics. 1999, 1: 51-62.PubMed Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF: Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics. 1999, 1: 51-62.PubMed
32.
go back to reference Lamark T, Kirkin V, Dikic I, Johansen T: NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle. 2009, 8: 1986-1990. 10.4161/cc.8.13.8892CrossRefPubMed Lamark T, Kirkin V, Dikic I, Johansen T: NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle. 2009, 8: 1986-1990. 10.4161/cc.8.13.8892CrossRefPubMed
34.
go back to reference Schwartz-Roberts JL, Shajahan AN, Cook KL, Warri A, Abu-Asab M, Clarke R: GX15-070 (obatoclax) induces apoptosis and inhibits cathepsin D- and L-mediated autophagosomal lysis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther. 2013, 12: 448-459. 10.1158/1535-7163.MCT-12-0617PubMedCentralCrossRefPubMed Schwartz-Roberts JL, Shajahan AN, Cook KL, Warri A, Abu-Asab M, Clarke R: GX15-070 (obatoclax) induces apoptosis and inhibits cathepsin D- and L-mediated autophagosomal lysis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther. 2013, 12: 448-459. 10.1158/1535-7163.MCT-12-0617PubMedCentralCrossRefPubMed
35.
go back to reference Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26: 1749-1760. 10.1038/sj.emboj.7601623PubMedCentralCrossRefPubMed Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26: 1749-1760. 10.1038/sj.emboj.7601623PubMedCentralCrossRefPubMed
36.
go back to reference Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, Wogan GN: Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A. 2013, 110: E2950-E2957. 10.1073/pnas.1307736110PubMedCentralCrossRefPubMed Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, Wogan GN: Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A. 2013, 110: E2950-E2957. 10.1073/pnas.1307736110PubMedCentralCrossRefPubMed
37.
go back to reference Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, Baumann WT, Tyson JJ, Xuan J, Wang Y, Warri A, Shajahan AN: Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012, 72: 1321-1331. 10.1158/1538-7445.AM2012-1321PubMedCentralCrossRefPubMed Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, Baumann WT, Tyson JJ, Xuan J, Wang Y, Warri A, Shajahan AN: Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012, 72: 1321-1331. 10.1158/1538-7445.AM2012-1321PubMedCentralCrossRefPubMed
38.
go back to reference de la Cadena SG, Hernandez-Fonseca K, Camacho-Arroyo I, Massieu L: Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis. 2013, 19: 414-427.CrossRef de la Cadena SG, Hernandez-Fonseca K, Camacho-Arroyo I, Massieu L: Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis. 2013, 19: 414-427.CrossRef
39.
go back to reference Haga N, Saito S, Tsukumo Y, Sakurai J, Furuno A, Tsuruo T, Tomida A: Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions. Cancer Sci. 2010, 101: 1125-1132. 10.1111/j.1349-7006.2010.01525.xCrossRefPubMed Haga N, Saito S, Tsukumo Y, Sakurai J, Furuno A, Tsuruo T, Tomida A: Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions. Cancer Sci. 2010, 101: 1125-1132. 10.1111/j.1349-7006.2010.01525.xCrossRefPubMed
40.
go back to reference Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R, Rudland PS, Sibson DR: Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer. 2008, 123: 85-88. 10.1002/ijc.23479CrossRefPubMed Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R, Rudland PS, Sibson DR: Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer. 2008, 123: 85-88. 10.1002/ijc.23479CrossRefPubMed
41.
go back to reference Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, Zhu Y, Zwart A, Wang M, Clarke R: Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007, 21: 4013-4027. 10.1096/fj.06-7990comCrossRefPubMed Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, Zhu Y, Zwart A, Wang M, Clarke R: Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007, 21: 4013-4027. 10.1096/fj.06-7990comCrossRefPubMed
42.
go back to reference Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW: SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001, 98: 13681-13686. 10.1073/pnas.251194298PubMedCentralCrossRefPubMed Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW: SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001, 98: 13681-13686. 10.1073/pnas.251194298PubMedCentralCrossRefPubMed
43.
go back to reference Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG, Shaul PW: Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res. 2000, 87: E44-E52. 10.1161/01.RES.87.11.e44CrossRefPubMed Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG, Shaul PW: Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res. 2000, 87: E44-E52. 10.1161/01.RES.87.11.e44CrossRefPubMed
44.
go back to reference Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH: XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014, 508: 103-107. 10.1038/nature13119PubMedCentralCrossRefPubMed Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH: XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014, 508: 103-107. 10.1038/nature13119PubMedCentralCrossRefPubMed
45.
go back to reference Clarke R, Shajahan AN, Riggins RB, Cho Y, Crawford A, Xuan J, Zhang B, Facey C, Aiyer H, Cook K, Hickman FE, Tavassoly I, Verdugo A, Chen C, Zwart A, Wärri A, Hilakivi-Clarke LA: Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol. 2009, 114: 8-20. 10.1016/j.jsbmb.2008.12.023PubMedCentralCrossRefPubMed Clarke R, Shajahan AN, Riggins RB, Cho Y, Crawford A, Xuan J, Zhang B, Facey C, Aiyer H, Cook K, Hickman FE, Tavassoly I, Verdugo A, Chen C, Zwart A, Wärri A, Hilakivi-Clarke LA: Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol. 2009, 114: 8-20. 10.1016/j.jsbmb.2008.12.023PubMedCentralCrossRefPubMed
46.
go back to reference Zhu Y, Singh B, Hewitt S, Liu A, Gomez B, Wang A, Clarke R: Expression patterns among interferon regulatory factor-1, human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha and progesterone receptor proteins in breast cancer tissue microarrays. Int J Oncol. 2006, 28: 67-76.PubMed Zhu Y, Singh B, Hewitt S, Liu A, Gomez B, Wang A, Clarke R: Expression patterns among interferon regulatory factor-1, human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha and progesterone receptor proteins in breast cancer tissue microarrays. Int J Oncol. 2006, 28: 67-76.PubMed
47.
go back to reference Benetatos L, Vartholomatos G, Hatzimichael E: Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci. 2014, 71: 257-269. 10.1007/s00018-013-1426-xCrossRefPubMed Benetatos L, Vartholomatos G, Hatzimichael E: Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci. 2014, 71: 257-269. 10.1007/s00018-013-1426-xCrossRefPubMed
48.
go back to reference Dang CV, Hamaker M, Sun P, Le A, Gao P: Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl). 2011, 89: 205-212. 10.1007/s00109-011-0730-xCrossRef Dang CV, Hamaker M, Sun P, Le A, Gao P: Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl). 2011, 89: 205-212. 10.1007/s00109-011-0730-xCrossRef
49.
50.
go back to reference Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, Stevenson HS, Karoly ED, Chan K, Samanta S, Prieto D, Hsu TY, Kurley SJ, Putluri V, Sonavane R, Edelman DC, Wulff J, Starks AM, Yang Y, Kittles RA, Yfantis HG, Lee DH, Ioffe OB, Schiff R, Stephens RM, Meltzer PS: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014, 124: 398-412. 10.1172/JCI71180PubMedCentralCrossRefPubMed Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, Stevenson HS, Karoly ED, Chan K, Samanta S, Prieto D, Hsu TY, Kurley SJ, Putluri V, Sonavane R, Edelman DC, Wulff J, Starks AM, Yang Y, Kittles RA, Yfantis HG, Lee DH, Ioffe OB, Schiff R, Stephens RM, Meltzer PS: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014, 124: 398-412. 10.1172/JCI71180PubMedCentralCrossRefPubMed
52.
go back to reference DeBerardinis RJ, Cheng T: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010, 29: 313-324. 10.1038/onc.2009.358PubMedCentralCrossRefPubMed DeBerardinis RJ, Cheng T: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010, 29: 313-324. 10.1038/onc.2009.358PubMedCentralCrossRefPubMed
53.
54.
go back to reference Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM: c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene. 2009, 28: 2485-2491. 10.1038/onc.2009.112PubMedCentralCrossRefPubMed Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM: c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene. 2009, 28: 2485-2491. 10.1038/onc.2009.112PubMedCentralCrossRefPubMed
55.
go back to reference Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F: Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One. 2009, 4: e4715- 10.1371/journal.pone.0004715PubMedCentralCrossRefPubMed Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F: Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One. 2009, 4: e4715- 10.1371/journal.pone.0004715PubMedCentralCrossRefPubMed
56.
go back to reference Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM: Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012, 109: 8983-8988. 10.1073/pnas.1203244109PubMedCentralCrossRefPubMed Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM: Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012, 109: 8983-8988. 10.1073/pnas.1203244109PubMedCentralCrossRefPubMed
58.
go back to reference Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y: Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem. 1999, 274: 32580-32587. 10.1074/jbc.274.46.32580CrossRefPubMed Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y: Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem. 1999, 274: 32580-32587. 10.1074/jbc.274.46.32580CrossRefPubMed
59.
go back to reference Alarcon-Vargas D, Ronai Z: c-Jun-NH2 kinase (JNK) contributes to the regulation of c-Myc protein stability. J Biol Chem. 2004, 279: 5008-5016.CrossRefPubMed Alarcon-Vargas D, Ronai Z: c-Jun-NH2 kinase (JNK) contributes to the regulation of c-Myc protein stability. J Biol Chem. 2004, 279: 5008-5016.CrossRefPubMed
60.
go back to reference Toh PP, Luo S, Menzies FM, Rasko T, Wanker EE, Rubinsztein DC: Myc inhibition impairs autophagosome formation. Hum Mol Genet. 2013, 22: 5237-5248. 10.1093/hmg/ddt381PubMedCentralCrossRefPubMed Toh PP, Luo S, Menzies FM, Rasko T, Wanker EE, Rubinsztein DC: Myc inhibition impairs autophagosome formation. Hum Mol Genet. 2013, 22: 5237-5248. 10.1093/hmg/ddt381PubMedCentralCrossRefPubMed
61.
go back to reference Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989, 49: 6449-6465.PubMed Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989, 49: 6449-6465.PubMed
62.
go back to reference Millon SR, Ostrander JH, Brown JQ, Raheja A, Seewaldt VL, Ramanujam N: Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Res Treat. 2011, 126: 55-62. 10.1007/s10549-010-0884-1CrossRefPubMed Millon SR, Ostrander JH, Brown JQ, Raheja A, Seewaldt VL, Ramanujam N: Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Res Treat. 2011, 126: 55-62. 10.1007/s10549-010-0884-1CrossRefPubMed
63.
go back to reference Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM, Häcker G, Krämer OH, Saur D, Schneider G: MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res. 2014, 42: 10433-10447. 10.1093/nar/gku763PubMedCentralCrossRefPubMed Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM, Häcker G, Krämer OH, Saur D, Schneider G: MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res. 2014, 42: 10433-10447. 10.1093/nar/gku763PubMedCentralCrossRefPubMed
64.
go back to reference Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev. 2009, 89: 381-410. 10.1152/physrev.00016.2008CrossRefPubMed Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev. 2009, 89: 381-410. 10.1152/physrev.00016.2008CrossRefPubMed
65.
go back to reference Holroyde CP, Skutches CL, Boden G, Reichard GA: Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res. 1984, 44: 5910-5913.PubMed Holroyde CP, Skutches CL, Boden G, Reichard GA: Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res. 1984, 44: 5910-5913.PubMed
66.
go back to reference Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE: Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther. 2011, 12: 1085-1097. 10.4161/cbt.12.12.18671PubMedCentralCrossRefPubMed Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE: Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther. 2011, 12: 1085-1097. 10.4161/cbt.12.12.18671PubMedCentralCrossRefPubMed
Metadata
Title
MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer
Authors
Ayesha N Shajahan-Haq
Katherine L Cook
Jessica L Schwartz-Roberts
Ahreej E Eltayeb
Diane M Demas
Anni M Warri
Caroline O B Facey
Leena A Hilakivi-Clarke
Robert Clarke
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-239

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine