Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Thymoquinone-induced conformational changes of PAK1 interrupt prosurvival MEK-ERK signaling in colorectal cancer

Authors: Chirine El-Baba, Vijayalakshmi Mahadevan, Fabian B Fahlbusch, Suma Mohan S, Tilman T Rau, Hala Gali-Muhtasib, Regine Schneider-Stock

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

Thymoquinone (TQ) was shown to reduce tumor growth in several cancer models both in vitro and in vivo. So far only a few targets of TQ, including protein kinases have been identified. Considering that kinases are promising candidates for targeted anticancer therapy, we studied the complex kinase network regulated by TQ.

Methods

Novel kinase targets influenced by TQ were revealed by in silico analysis of peptide array data obtained from TQ-treated HCT116wt cells. Western blotting and kinase activity assays were used to determine changes in kinase expression patterns in colorectal cancer cells (HCT116wt, DLD-1, HT29). To study the viability/apoptotic effects of combining the PAK1 inhibitor IPA-3 and TQ, crystal violet assay and AnnexinV/PI staining were employed. Interactions between PAK1 and ERK1/2 were investigated by co-immunoprecipitation and modeled by docking studies. Transfection with different PAK1 mutants unraveled the role of TQ-induced changes in PAK1 phosphorylation and TQ´s effects on PAK1 scaffold function.

Results

Of the 104 proteins identified, 50 were upregulated ≥2 fold by TQ and included molecules in the AKT-MEK-ERK1/2 pathway. Oncogenic PAK1 emerged as an interesting TQ target. Time-dependent changes in two PAK1 phosphorylation sites generated a specific kinase profile with early increase in pPAKThr212 followed by late increase in pPAKThr423. TQ induced an increase of pERK1/2 and triggered the early formation of an ERK1/2-PAK1 complex. Modeling confirmed that TQ binds in the vicinity of Thr212 accompanied by conformational changes in ERK2-PAK1 binding. Transfecting the cells with the non-phosphorylatable mutant T212A revealed an increase of pPAKThr423 and enhanced apoptosis. Likewise, an increase in apoptosis was observed in cells transfected with both the kinase-dead K299R mutant and PAK1 siRNA. Using structural modeling we suggest that TQ interferes also with the kinase domain consequently disturbing its interaction with pPAKThr423, finally inhibiting MEK-ERK1/2 signaling and disrupting its prosurvival function. pERK1/2 loss was also validated in vivo.

Conclusions

Our study shows for the first time that the small molecule TQ directly binds to PAK1 changing its conformation and scaffold function. Because TQ affects the central RAF/MEK/ERK1/2 pathway, the combination of TQ with targeted therapies is worth considering for future anticancer treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N: Colorectal cancer. Lancet. 2010, 375: 1030-1047. 10.1016/S0140-6736(10)60353-4CrossRefPubMed Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N: Colorectal cancer. Lancet. 2010, 375: 1030-1047. 10.1016/S0140-6736(10)60353-4CrossRefPubMed
2.
go back to reference Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU: Thymoquinone: fifty years of success in the battle against cancer models. Drug Discov Today. 2014, 19: 18-30. 10.1016/j.drudis.2013.08.021CrossRefPubMed Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU: Thymoquinone: fifty years of success in the battle against cancer models. Drug Discov Today. 2014, 19: 18-30. 10.1016/j.drudis.2013.08.021CrossRefPubMed
3.
go back to reference Nessa MU, Beale P, Chan C, Yu JQ, Huq F: Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011, 31: 3789-3797.PubMed Nessa MU, Beale P, Chan C, Yu JQ, Huq F: Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011, 31: 3789-3797.PubMed
4.
go back to reference Woo CC, Kumar AP, Sethi G, Tan KH: Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012, 83: 443-451. 10.1016/j.bcp.2011.09.029CrossRefPubMed Woo CC, Kumar AP, Sethi G, Tan KH: Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012, 83: 443-451. 10.1016/j.bcp.2011.09.029CrossRefPubMed
5.
go back to reference Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H: Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J Exp Clin Cancer Res. 2010, 29: 87- 10.1186/1756-9966-29-87PubMedCentralCrossRefPubMed Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H: Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J Exp Clin Cancer Res. 2010, 29: 87- 10.1186/1756-9966-29-87PubMedCentralCrossRefPubMed
6.
go back to reference Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, Sarkar FH, Mohammad RM: Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res. 2009, 69: 5575-5583. 10.1158/0008-5472.CAN-08-4235CrossRefPubMed Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, Sarkar FH, Mohammad RM: Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res. 2009, 69: 5575-5583. 10.1158/0008-5472.CAN-08-4235CrossRefPubMed
7.
go back to reference Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X, Dong W: Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun. 2012, 417: 864-868. 10.1016/j.bbrc.2011.12.063CrossRefPubMed Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X, Dong W: Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun. 2012, 417: 864-868. 10.1016/j.bbrc.2011.12.063CrossRefPubMed
8.
go back to reference El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, Schneider-Stock R, Gali-Muhtasib H: Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010, 15: 183-195. 10.1007/s10495-009-0421-zCrossRefPubMed El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, Schneider-Stock R, Gali-Muhtasib H: Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010, 15: 183-195. 10.1007/s10495-009-0421-zCrossRefPubMed
9.
go back to reference Gali-Muhtasib H, Kuester D, Mawrin C, Bajbouj K, Diestel A, Ocker M, Habold C, Foltzer-Jourdainne C, Schoenfeld P, Peters B: Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res. 2008, 68: 5609-5618. 10.1158/0008-5472.CAN-08-0884CrossRefPubMed Gali-Muhtasib H, Kuester D, Mawrin C, Bajbouj K, Diestel A, Ocker M, Habold C, Foltzer-Jourdainne C, Schoenfeld P, Peters B: Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res. 2008, 68: 5609-5618. 10.1158/0008-5472.CAN-08-0884CrossRefPubMed
10.
go back to reference Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, Evert M, El-Najjar N, Peters B, Jurjus A: Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med. 2008, 12: 330-342.PubMedCentralCrossRefPubMed Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, Evert M, El-Najjar N, Peters B, Jurjus A: Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med. 2008, 12: 330-342.PubMedCentralCrossRefPubMed
11.
go back to reference Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R: Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol. 2004, 25: 857-866.PubMed Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R: Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol. 2004, 25: 857-866.PubMed
12.
go back to reference Gali-Muhtasib HU: Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA: Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs. 2004, 15: 389-399. 10.1097/00001813-200404000-00012CrossRefPubMed Gali-Muhtasib HU: Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA: Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs. 2004, 15: 389-399. 10.1097/00001813-200404000-00012CrossRefPubMed
13.
go back to reference Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, Sethi G, Aggarwal BB, Liu M: Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther. 2008, 7: 1789-1796. 10.1158/1535-7163.MCT-08-0124PubMedCentralCrossRefPubMed Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, Sethi G, Aggarwal BB, Liu M: Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther. 2008, 7: 1789-1796. 10.1158/1535-7163.MCT-08-0124PubMedCentralCrossRefPubMed
14.
go back to reference Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH: Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One. 2013, 8: e75356- 10.1371/journal.pone.0075356PubMedCentralCrossRefPubMed Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH: Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One. 2013, 8: e75356- 10.1371/journal.pone.0075356PubMedCentralCrossRefPubMed
15.
go back to reference Attoub S, Sperandio O, Raza H, Arafat K, Al-Salam S: Al Sultan MA, Al Safi M, Takahashi T, Adem A: Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol. 2013, 27: 557-569. 10.1111/j.1472-8206.2012.01056.xCrossRefPubMed Attoub S, Sperandio O, Raza H, Arafat K, Al-Salam S: Al Sultan MA, Al Safi M, Takahashi T, Adem A: Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol. 2013, 27: 557-569. 10.1111/j.1472-8206.2012.01056.xCrossRefPubMed
16.
go back to reference Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G: Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-kappaB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget. 2014, 5: 634-648.PubMedCentralCrossRefPubMed Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G: Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-kappaB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget. 2014, 5: 634-648.PubMedCentralCrossRefPubMed
17.
go back to reference Li F, Rajendran P, Sethi G: Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol. 2010, 161: 541-554. 10.1111/j.1476-5381.2010.00874.xPubMedCentralCrossRefPubMed Li F, Rajendran P, Sethi G: Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol. 2010, 161: 541-554. 10.1111/j.1476-5381.2010.00874.xPubMedCentralCrossRefPubMed
18.
go back to reference Sethi G, Ahn KS, Aggarwal BB: Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 2008, 6: 1059-1070. 10.1158/1541-7786.MCR-07-2088CrossRefPubMed Sethi G, Ahn KS, Aggarwal BB: Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 2008, 6: 1059-1070. 10.1158/1541-7786.MCR-07-2088CrossRefPubMed
19.
go back to reference Yin Z, Song Y, Rehse PH: Thymoquinone blocks pSer/pThr recognition by Plk1 Polo-box domain as a phosphate mimic. ACS Chem Biol. 2013, 8: 303-308. 10.1021/cb3004379CrossRefPubMed Yin Z, Song Y, Rehse PH: Thymoquinone blocks pSer/pThr recognition by Plk1 Polo-box domain as a phosphate mimic. ACS Chem Biol. 2013, 8: 303-308. 10.1021/cb3004379CrossRefPubMed
20.
go back to reference Fabbro D, Cowan-Jacob SW, Mobitz H, Martiny-Baron G: Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol. 2012, 795: 1-34. 10.1007/978-1-61779-337-0_1CrossRefPubMed Fabbro D, Cowan-Jacob SW, Mobitz H, Martiny-Baron G: Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol. 2012, 795: 1-34. 10.1007/978-1-61779-337-0_1CrossRefPubMed
21.
go back to reference Zhao ZS, Lim JP, Ng YW, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005, 20: 237-249. 10.1016/j.molcel.2005.08.035CrossRefPubMed Zhao ZS, Lim JP, Ng YW, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005, 20: 237-249. 10.1016/j.molcel.2005.08.035CrossRefPubMed
22.
go back to reference Eswaran J, Li DQ, Shah A, Kumar R: Molecular pathways: targeting p21-activated kinase 1 signaling in cancer–opportunities, challenges, and limitations. Clin Cancer Res. 2012, 18: 3743-3749. 10.1158/1078-0432.CCR-11-1952PubMedCentralCrossRefPubMed Eswaran J, Li DQ, Shah A, Kumar R: Molecular pathways: targeting p21-activated kinase 1 signaling in cancer–opportunities, challenges, and limitations. Clin Cancer Res. 2012, 18: 3743-3749. 10.1158/1078-0432.CCR-11-1952PubMedCentralCrossRefPubMed
23.
go back to reference Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES: PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010, 14: 703-725. 10.1517/14728222.2010.492779PubMedCentralCrossRefPubMed Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES: PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010, 14: 703-725. 10.1517/14728222.2010.492779PubMedCentralCrossRefPubMed
24.
go back to reference Wong LL, Lam IP, Wong TY, Lai WL, Liu HF, Yeung LL, Ching YP: IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-kappaB activation. PLoS One. 2013, 8: e68843- 10.1371/journal.pone.0068843PubMedCentralCrossRefPubMed Wong LL, Lam IP, Wong TY, Lai WL, Liu HF, Yeung LL, Ching YP: IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-kappaB activation. PLoS One. 2013, 8: e68843- 10.1371/journal.pone.0068843PubMedCentralCrossRefPubMed
25.
go back to reference Zenke FT, King CC, Bohl BP, Bokoch GM: Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem. 1999, 274: 32565-32573. 10.1074/jbc.274.46.32565CrossRefPubMed Zenke FT, King CC, Bohl BP, Bokoch GM: Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem. 1999, 274: 32565-32573. 10.1074/jbc.274.46.32565CrossRefPubMed
26.
go back to reference Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM: Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem. 2005, 280: 2055-2064.CrossRefPubMed Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM: Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem. 2005, 280: 2055-2064.CrossRefPubMed
27.
go back to reference Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC: Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000, 102: 387-397. 10.1016/S0092-8674(00)00043-XCrossRefPubMed Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC: Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000, 102: 387-397. 10.1016/S0092-8674(00)00043-XCrossRefPubMed
28.
go back to reference Wang J, Wu JW, Wang ZX: Structural insights into the autoactivation mechanism of p21-activated protein kinase. Structure. 2011, 19: 1752-1761. 10.1016/j.str.2011.10.013CrossRefPubMed Wang J, Wu JW, Wang ZX: Structural insights into the autoactivation mechanism of p21-activated protein kinase. Structure. 2011, 19: 1752-1761. 10.1016/j.str.2011.10.013CrossRefPubMed
30.
go back to reference Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010, 5: 725-738. 10.1038/nprot.2010.5PubMedCentralCrossRefPubMed Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010, 5: 725-738. 10.1038/nprot.2010.5PubMedCentralCrossRefPubMed
31.
go back to reference Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ: Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997, 90: 859-869. 10.1016/S0092-8674(00)80351-7CrossRefPubMed Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ: Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997, 90: 859-869. 10.1016/S0092-8674(00)80351-7CrossRefPubMed
32.
go back to reference Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, Mei Q: p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem. 2013, 288: 20093-20099. 10.1074/jbc.M112.426023PubMedCentralCrossRefPubMed Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, Mei Q: p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem. 2013, 288: 20093-20099. 10.1074/jbc.M112.426023PubMedCentralCrossRefPubMed
33.
go back to reference Howe AK, Aplin AE, Juliano RL: Anchorage-dependent ERK signaling–mechanisms and consequences. Curr Opin Genet Dev. 2002, 12: 30-35. 10.1016/S0959-437X(01)00260-XCrossRefPubMed Howe AK, Aplin AE, Juliano RL: Anchorage-dependent ERK signaling–mechanisms and consequences. Curr Opin Genet Dev. 2002, 12: 30-35. 10.1016/S0959-437X(01)00260-XCrossRefPubMed
34.
go back to reference Zhan X, Desiderio DM: Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics. 2010, 3: 13- 10.1186/1755-8794-3-13PubMedCentralCrossRefPubMed Zhan X, Desiderio DM: Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics. 2010, 3: 13- 10.1186/1755-8794-3-13PubMedCentralCrossRefPubMed
35.
go back to reference Da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57.CrossRefPubMed Da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57.CrossRefPubMed
36.
go back to reference Da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37: 1-13. 10.1093/nar/gkn923CrossRefPubMed Da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37: 1-13. 10.1093/nar/gkn923CrossRefPubMed
37.
go back to reference Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 2004, 32: W96-99. 10.1093/nar/gkh354PubMedCentralCrossRefPubMed Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 2004, 32: W96-99. 10.1093/nar/gkh354PubMedCentralCrossRefPubMed
38.
go back to reference Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004, 20: 45-50. 10.1093/bioinformatics/btg371CrossRefPubMed Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004, 20: 45-50. 10.1093/bioinformatics/btg371CrossRefPubMed
39.
go back to reference Gohlke H, Kiel C, Case DA: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003, 330: 891-913. 10.1016/S0022-2836(03)00610-7CrossRefPubMed Gohlke H, Kiel C, Case DA: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003, 330: 891-913. 10.1016/S0022-2836(03)00610-7CrossRefPubMed
40.
go back to reference Sanchez R, Sali A: Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol. 2000, 143: 97-129.PubMed Sanchez R, Sali A: Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol. 2000, 143: 97-129.PubMed
41.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004, 25: 1605-1612. 10.1002/jcc.20084CrossRefPubMed Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004, 25: 1605-1612. 10.1002/jcc.20084CrossRefPubMed
Metadata
Title
Thymoquinone-induced conformational changes of PAK1 interrupt prosurvival MEK-ERK signaling in colorectal cancer
Authors
Chirine El-Baba
Vijayalakshmi Mahadevan
Fabian B Fahlbusch
Suma Mohan S
Tilman T Rau
Hala Gali-Muhtasib
Regine Schneider-Stock
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-201

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine