Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

microRNA-29 negatively regulates EMT regulator N-myc interactor in breast cancer

Authors: Jack W Rostas III, Hawley C Pruitt, Brandon J Metge, Aparna Mitra, Sarah K Bailey, Sejong Bae, Karan P Singh, Daniel J Devine, Donna L Dyess, William O Richards, J Allan Tucker, Lalita A Shevde, Rajeev S Samant

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis.

Method

Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3β phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses.

Results

Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/β-catenin signaling resulting from inactivation of GSK3β.

Conclusion

Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bao J, Zervos AS: Isolation and characterization of Nmi, a novel partner of Myc proteins. Oncogene. 1996, 12: 2171-2176.PubMed Bao J, Zervos AS: Isolation and characterization of Nmi, a novel partner of Myc proteins. Oncogene. 1996, 12: 2171-2176.PubMed
2.
go back to reference Bannasch D, Weis I, Schwab M: Nmi protein interacts with regions that differ between MycN and Myc and is localized in the cytplasm of neuroblastoma cells in contrast to nuclear MycN. Oncogene. 1999, 18: 6810-6817. 10.1038/sj.onc.1203090CrossRefPubMed Bannasch D, Weis I, Schwab M: Nmi protein interacts with regions that differ between MycN and Myc and is localized in the cytplasm of neuroblastoma cells in contrast to nuclear MycN. Oncogene. 1999, 18: 6810-6817. 10.1038/sj.onc.1203090CrossRefPubMed
3.
go back to reference Zhu M, Susan J, Maria B, Leonard WJ: Functional Association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling. Cell. 1999, 96: 121-130. 10.1016/S0092-8674(00)80965-4CrossRefPubMed Zhu M, Susan J, Maria B, Leonard WJ: Functional Association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling. Cell. 1999, 96: 121-130. 10.1016/S0092-8674(00)80965-4CrossRefPubMed
4.
go back to reference Li H, Tae-Hee L, Hava A: A novel tricomplex of BRCA1, Nmi, and c-Myc Inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer. J Biol Chem. 2002, 277: 20965-20973. doi:10.1074/jbc.M112231200CrossRefPubMed Li H, Tae-Hee L, Hava A: A novel tricomplex of BRCA1, Nmi, and c-Myc Inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer. J Biol Chem. 2002, 277: 20965-20973. doi:10.1074/jbc.M112231200CrossRefPubMed
5.
go back to reference Schlierf B, Lang S, Kosian T, Werner T, Wegner M: The high-mobility group transcription factor Sox10 interacts with the N-myc-interacting protein Nmi. J Mol Biol. 2005, 353: 1033-1042. doi:10.1016/j.jmb.2005.09.013CrossRefPubMed Schlierf B, Lang S, Kosian T, Werner T, Wegner M: The high-mobility group transcription factor Sox10 interacts with the N-myc-interacting protein Nmi. J Mol Biol. 2005, 353: 1033-1042. doi:10.1016/j.jmb.2005.09.013CrossRefPubMed
6.
go back to reference Zhang K, Zheng G, Yang Y: Stability of Nmi protein is controlled by its association with Tip60. Mol Cell Biol. 2007, 303: 1-8. doi:10.1007/s11010-007-9449-y Zhang K, Zheng G, Yang Y: Stability of Nmi protein is controlled by its association with Tip60. Mol Cell Biol. 2007, 303: 1-8. doi:10.1007/s11010-007-9449-y
7.
go back to reference Li Z, Hou J, Sun L, Wen T, Wang L, Zhao X, Xie Q, Zhang SQ: NMI mediates transcription-independent ARF regulation in response to cellular stresses. Mol Biol Cell. 2012, 23: 4635-4646. doi:10.1091/mbc.E12-04-0304PubMedCentralCrossRefPubMed Li Z, Hou J, Sun L, Wen T, Wang L, Zhao X, Xie Q, Zhang SQ: NMI mediates transcription-independent ARF regulation in response to cellular stresses. Mol Biol Cell. 2012, 23: 4635-4646. doi:10.1091/mbc.E12-04-0304PubMedCentralCrossRefPubMed
8.
go back to reference Devine DJ, Rostas JW, Metge BJ, Das S, Mulekar MS, Tucker JA, Grizzle WE, Buchsbaum DJ, Shevde LA, Samant RS: Loss of N-Myc interactor promotes epithelial-mesenchymal transition by activation of TGF-beta/SMAD signaling. Oncogene. 2013, doi:10.1038/onc.2013.215 Devine DJ, Rostas JW, Metge BJ, Das S, Mulekar MS, Tucker JA, Grizzle WE, Buchsbaum DJ, Shevde LA, Samant RS: Loss of N-Myc interactor promotes epithelial-mesenchymal transition by activation of TGF-beta/SMAD signaling. Oncogene. 2013, doi:10.1038/onc.2013.215
9.
go back to reference Fillmore RA, Mitra A, Xi Y, Ju J, Scammell J, Shevde LA, Samant RS: Nmi (N-Myc interactor) inhibits Wnt/β-catenin signaling and retards tumor growth. Int J Cancer. 2009, 125: 556-564. 10.1002/ijc.24276CrossRefPubMed Fillmore RA, Mitra A, Xi Y, Ju J, Scammell J, Shevde LA, Samant RS: Nmi (N-Myc interactor) inhibits Wnt/β-catenin signaling and retards tumor growth. Int J Cancer. 2009, 125: 556-564. 10.1002/ijc.24276CrossRefPubMed
10.
go back to reference Lovat F, Valeri N, Croce CM: MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011, 38: 724-733. doi:10.1053/j.seminoncol.2011.08.006CrossRefPubMed Lovat F, Valeri N, Croce CM: MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011, 38: 724-733. doi:10.1053/j.seminoncol.2011.08.006CrossRefPubMed
12.
go back to reference Huynh KT, Hoon DS: Epigenetics of regional lymph node metastasis in solid tumors. Clin Exp Metastas. 2012, 29: 747-756. 10.1007/s10585-012-9491-3. doi:10.1007/s10585-012-9491-3CrossRef Huynh KT, Hoon DS: Epigenetics of regional lymph node metastasis in solid tumors. Clin Exp Metastas. 2012, 29: 747-756. 10.1007/s10585-012-9491-3. doi:10.1007/s10585-012-9491-3CrossRef
13.
go back to reference Fabian MR, Sundermeier TR, Sonenberg N: Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol. 2010, 50: 1-20. doi:10.1007/978-3-642-03103-8_1CrossRefPubMed Fabian MR, Sundermeier TR, Sonenberg N: Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol. 2010, 50: 1-20. doi:10.1007/978-3-642-03103-8_1CrossRefPubMed
14.
go back to reference Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5CrossRefPubMed Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5CrossRefPubMed
15.
go back to reference Yu Z, Pestell RG: Small non-coding RNAs govern mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia. 2012, 17: 59-64. doi:10.1007/s10911-012-9246-4PubMedCentralCrossRefPubMed Yu Z, Pestell RG: Small non-coding RNAs govern mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia. 2012, 17: 59-64. doi:10.1007/s10911-012-9246-4PubMedCentralCrossRefPubMed
16.
go back to reference Piao HL, Ma L: Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol Neoplasia. 2012, 17: 33-42. doi:10.1007/s10911-012-9245-5PubMedCentralCrossRefPubMed Piao HL, Ma L: Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol Neoplasia. 2012, 17: 33-42. doi:10.1007/s10911-012-9245-5PubMedCentralCrossRefPubMed
17.
go back to reference Valastyan S: Roles of microRNAs and other non-coding RNAs in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2012, 17: 23-32. doi:10.1007/s10911-012-9241-9CrossRefPubMed Valastyan S: Roles of microRNAs and other non-coding RNAs in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2012, 17: 23-32. doi:10.1007/s10911-012-9241-9CrossRefPubMed
19.
go back to reference Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. doi:10.1016/j.cell.2004.12.035CrossRefPubMed Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. doi:10.1016/j.cell.2004.12.035CrossRefPubMed
20.
go back to reference John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol. 2005, 3 (7): e264-10.1371/journal.pbio.0030264. doi:10.1371/journal.pbio.0020363PubMedCentralCrossRef John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol. 2005, 3 (7): e264-10.1371/journal.pbio.0030264. doi:10.1371/journal.pbio.0020363PubMedCentralCrossRef
21.
go back to reference John B, Sander C, Marks DS: Prediction of human microRNA targets. Methods Mol Biol. 2006, 342: 101-113. doi:10.1385/1-59745-123-1:101PubMed John B, Sander C, Marks DS: Prediction of human microRNA targets. Methods Mol Biol. 2006, 342: 101-113. doi:10.1385/1-59745-123-1:101PubMed
23.
24.
go back to reference Wang X, El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008, 24: 325-332. doi:10.1093/bioinformatics/btm595CrossRefPubMed Wang X, El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008, 24: 325-332. doi:10.1093/bioinformatics/btm595CrossRefPubMed
25.
go back to reference Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268. 10.1016/S1046-2023(03)00032-XCrossRefPubMed Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268. 10.1016/S1046-2023(03)00032-XCrossRefPubMed
26.
go back to reference Debnath J, Brugge JS: Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005, 5: 675-688. doi:10.1038/nrc1695CrossRefPubMed Debnath J, Brugge JS: Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005, 5: 675-688. doi:10.1038/nrc1695CrossRefPubMed
27.
go back to reference Menezes ME, Mitra A, Shevde LA, Samant RS: DNAJB6 governs a novel regulatory loop determining Wnt/beta-catenin signalling activity. Biochem J. 2012, 444: 573-580. doi:10.1042/BJ20120205PubMedCentralCrossRefPubMed Menezes ME, Mitra A, Shevde LA, Samant RS: DNAJB6 governs a novel regulatory loop determining Wnt/beta-catenin signalling activity. Biochem J. 2012, 444: 573-580. doi:10.1042/BJ20120205PubMedCentralCrossRefPubMed
28.
go back to reference Mitra A, Fillmore RA, Metge BJ, Rajesh M, Xi Y, King J, Ju J, Pannell L, Shevde LA, Samant RS: Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res. 2008, 10: R22-doi:10.1186/bcr1874PubMedCentralCrossRefPubMed Mitra A, Fillmore RA, Metge BJ, Rajesh M, Xi Y, King J, Ju J, Pannell L, Shevde LA, Samant RS: Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res. 2008, 10: R22-doi:10.1186/bcr1874PubMedCentralCrossRefPubMed
29.
go back to reference Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, Lu SC: MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Investig. 2013, 123: 285-298. doi:10.1172/JCI63861PubMedCentralCrossRefPubMed Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, Lu SC: MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Investig. 2013, 123: 285-298. doi:10.1172/JCI63861PubMedCentralCrossRefPubMed
30.
go back to reference Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, Cameselle-Teijeiro J, Vidal A, Martins TC, Sobrinho-Simoes M, Soares P: Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene. 2011, 30: 1302-1317. doi:10.1038/onc.2010.512CrossRefPubMed Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, Cameselle-Teijeiro J, Vidal A, Martins TC, Sobrinho-Simoes M, Soares P: Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene. 2011, 30: 1302-1317. doi:10.1038/onc.2010.512CrossRefPubMed
31.
go back to reference Heyn H, Schreek S, Buurman R, Focken T, Schlegelberger B, Beger C: MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas. 2012, 41: 218-221. doi:10.1097/MPA.0b013e318224b701CrossRefPubMed Heyn H, Schreek S, Buurman R, Focken T, Schlegelberger B, Beger C: MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas. 2012, 41: 218-221. doi:10.1097/MPA.0b013e318224b701CrossRefPubMed
32.
go back to reference Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H: microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010, 207: 475-489. doi:10.1084/jem.20090831PubMedCentralCrossRefPubMed Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H: microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010, 207: 475-489. doi:10.1084/jem.20090831PubMedCentralCrossRefPubMed
33.
go back to reference Gebeshuber CA, Zatloukal K, Martinez J: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009, 10: 400-405. doi:10.1038/embor.2009.9PubMedCentralCrossRefPubMed Gebeshuber CA, Zatloukal K, Martinez J: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009, 10: 400-405. doi:10.1038/embor.2009.9PubMedCentralCrossRefPubMed
34.
go back to reference Kim JW, Mori S, Nevins JR: Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res. 2010, 70: 4820-4828. doi:10.1158/0008-5472.CAN-10-0659PubMedCentralCrossRefPubMed Kim JW, Mori S, Nevins JR: Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res. 2010, 70: 4820-4828. doi:10.1158/0008-5472.CAN-10-0659PubMedCentralCrossRefPubMed
35.
go back to reference Boggs RM, Wright ZM, Stickney MJ, Porter WW, Murphy KE: MicroRNA expression in canine mammary cancer. Mamm Genome. 2008, 19: 561-569. doi:10.1007/s00335-008-9128-7CrossRefPubMed Boggs RM, Wright ZM, Stickney MJ, Porter WW, Murphy KE: MicroRNA expression in canine mammary cancer. Mamm Genome. 2008, 19: 561-569. doi:10.1007/s00335-008-9128-7CrossRefPubMed
36.
go back to reference Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65: 7065-7070. doi:10.1158/0008-5472.CAN-05-1783CrossRefPubMed Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65: 7065-7070. doi:10.1158/0008-5472.CAN-05-1783CrossRefPubMed
37.
go back to reference Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006, 5: 24-doi:10.1186/1476-4598-5-24PubMedCentralCrossRefPubMed Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006, 5: 24-doi:10.1186/1476-4598-5-24PubMedCentralCrossRefPubMed
38.
go back to reference Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ: Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol. 2010, 27: 406-415. doi:10.1007/s12032-009-9225-9CrossRefPubMed Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ: Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol. 2010, 27: 406-415. doi:10.1007/s12032-009-9225-9CrossRefPubMed
39.
go back to reference Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM: miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem. 2010, 285: 25221-25231. doi:10.1074/jbc.M110.116137PubMedCentralCrossRefPubMed Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM: miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem. 2010, 285: 25221-25231. doi:10.1074/jbc.M110.116137PubMedCentralCrossRefPubMed
40.
go back to reference Kapinas K, Kessler CB, Delany AM: miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem. 2009, 108: 216-224. doi:10.1002/jcb.22243PubMedCentralCrossRefPubMed Kapinas K, Kessler CB, Delany AM: miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem. 2009, 108: 216-224. doi:10.1002/jcb.22243PubMedCentralCrossRefPubMed
41.
go back to reference Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS, Huang TS: TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem. 2012, 287: 2798-2809. doi:10.1074/jbc.M111.258947PubMedCentralCrossRefPubMed Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS, Huang TS: TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem. 2012, 287: 2798-2809. doi:10.1074/jbc.M111.258947PubMedCentralCrossRefPubMed
42.
go back to reference Consortium EP: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011, 9: e1001046-doi:10.1371/journal.pbio.1001046CrossRef Consortium EP: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011, 9: e1001046-doi:10.1371/journal.pbio.1001046CrossRef
43.
go back to reference Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ: ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013, 41: D56-63. doi:10.1093/nar/gks1172PubMedCentralCrossRefPubMed Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ: ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013, 41: D56-63. doi:10.1093/nar/gks1172PubMedCentralCrossRefPubMed
44.
go back to reference Li S, Sun Y, Li L: The expression of beta-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol. 2014, doi:10.1007/s13277-014-1975-0 Li S, Sun Y, Li L: The expression of beta-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol. 2014, doi:10.1007/s13277-014-1975-0
45.
go back to reference Dey N, Young B, Abramovitz M, Bouzyk M, Barwick B, De P, Leyland-Jones B: Differential activation of Wnt-beta-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner. PLoS ONE. 2013, 8: e77425-doi:10.1371/journal.pone.0077425PubMedCentralCrossRefPubMed Dey N, Young B, Abramovitz M, Bouzyk M, Barwick B, De P, Leyland-Jones B: Differential activation of Wnt-beta-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner. PLoS ONE. 2013, 8: e77425-doi:10.1371/journal.pone.0077425PubMedCentralCrossRefPubMed
46.
go back to reference Incassati A, Chandramouli A, Eelkema R, Cowin P: Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast Cancer Res. 2010, 12: 213-doi:10.1186/bcr2723PubMedCentralCrossRefPubMed Incassati A, Chandramouli A, Eelkema R, Cowin P: Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast Cancer Res. 2010, 12: 213-doi:10.1186/bcr2723PubMedCentralCrossRefPubMed
47.
go back to reference Mukherjee N, Bhattacharya N, Alam N, Roy A, Roychoudhury S, Panda CK: Subtype-specific alterations of the Wnt signaling pathway in breast cancer: clinical and prognostic significance. Cancer Sci. 2012, 103: 210-220. doi:10.1111/j.1349-7006.2011.02131.xCrossRefPubMed Mukherjee N, Bhattacharya N, Alam N, Roy A, Roychoudhury S, Panda CK: Subtype-specific alterations of the Wnt signaling pathway in breast cancer: clinical and prognostic significance. Cancer Sci. 2012, 103: 210-220. doi:10.1111/j.1349-7006.2011.02131.xCrossRefPubMed
48.
go back to reference Menezes ME, Devine DJ, Shevde LA, Samant RS: Dickkopf1: a tumor suppressor or metastasis promoter?. Int J Cancer. 2012, 130: 1477-1483. doi:10.1002/ijc.26449PubMedCentralCrossRefPubMed Menezes ME, Devine DJ, Shevde LA, Samant RS: Dickkopf1: a tumor suppressor or metastasis promoter?. Int J Cancer. 2012, 130: 1477-1483. doi:10.1002/ijc.26449PubMedCentralCrossRefPubMed
49.
go back to reference Inui M, Montagner M, Piccolo S: miRNAs and morphogen gradients. Curr Opin Cell Biol. 2012, 24: 194-201. doi:10.1016/j.ceb.2011.11.013CrossRefPubMed Inui M, Montagner M, Piccolo S: miRNAs and morphogen gradients. Curr Opin Cell Biol. 2012, 24: 194-201. doi:10.1016/j.ceb.2011.11.013CrossRefPubMed
50.
go back to reference Jiang H, Zhang G, Wu JH, Jiang CP: Diverse roles of miR-29 in cancer (Review). Oncol Rep. 2014, doi:10.3892/or.2014.3036 Jiang H, Zhang G, Wu JH, Jiang CP: Diverse roles of miR-29 in cancer (Review). Oncol Rep. 2014, doi:10.3892/or.2014.3036
51.
go back to reference Park SY, Lee JH, Ha M, Nam JW, Kim VN: miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009, 16: 23-29. doi:10.1038/nsmb.1533CrossRefPubMed Park SY, Lee JH, Ha M, Nam JW, Kim VN: miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009, 16: 23-29. doi:10.1038/nsmb.1533CrossRefPubMed
52.
go back to reference Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z: GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013, 15: 201-213. doi:10.1038/ncb2672PubMedCentralCrossRefPubMed Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z: GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013, 15: 201-213. doi:10.1038/ncb2672PubMedCentralCrossRefPubMed
53.
go back to reference Wang C, Bian Z, Wei D, Zhang JG: miR-29b regulates migration of human breast cancer cells. Mol Cell Biochem. 2011, 352: 197-207. doi:10.1007/s11010-011-0755-zCrossRefPubMed Wang C, Bian Z, Wei D, Zhang JG: miR-29b regulates migration of human breast cancer cells. Mol Cell Biochem. 2011, 352: 197-207. doi:10.1007/s11010-011-0755-zCrossRefPubMed
54.
go back to reference Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, Volinia S, Alder H, Rassenti L, Kipps T, Croce CM, Pekarsky Y: Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci U S A. 2010, 107: 12210-12215. doi:10.1073/pnas.1007186107PubMedCentralCrossRefPubMed Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, Volinia S, Alder H, Rassenti L, Kipps T, Croce CM, Pekarsky Y: Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci U S A. 2010, 107: 12210-12215. doi:10.1073/pnas.1007186107PubMedCentralCrossRefPubMed
Metadata
Title
microRNA-29 negatively regulates EMT regulator N-myc interactor in breast cancer
Authors
Jack W Rostas III
Hawley C Pruitt
Brandon J Metge
Aparna Mitra
Sarah K Bailey
Sejong Bae
Karan P Singh
Daniel J Devine
Donna L Dyess
William O Richards
J Allan Tucker
Lalita A Shevde
Rajeev S Samant
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-200

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine