Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer

Authors: Yuanyuan Li, Syed M Meeran, Shweta N Patel, Huaping Chen, Tabitha M Hardy, Trygve O Tollefsbol

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Estrogen receptor-α (ERα)-negative breast cancer is clinically aggressive and normally does not respond to conventional estrogen target-directed therapies. The soybean isoflavone, genistein (GE), has been shown to prevent and inhibit breast cancer and recent studies have suggested that GE can enhance the anticancer capacity of an estrogen antagonist, tamoxifen (TAM), especially in ERα-positive breast cancer cells. However, the role of GE in ERα-negative breast cancer remains unknown.

Methods

We have evaluated the in vitro and in vivo epigenetic effects of GE on ERα reactivation by using MTT assay, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, western-blot assay, immunoprecipitation (ChIP) assay, immunohistochemistry and epigenetic enzymatic activity analysis. Preclinical mouse models including xenograft and spontaneous breast cancer mouse models were used to test the efficacy of GE in vivo.

Results

We found that GE can reactivate ERα expression and this effect was synergistically enhanced when combined with a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), in ERα-negative MDA-MB-231 breast cancer cells. GE treatment also re-sensitized ERα-dependent cellular responses to activator 17β-estradiol (E2) and antagonist TAM. Further studies revealed that GE can lead to remodeling of the chromatin structure in the ERα promoter thereby contributing to ERα reactivation. Consistently, dietary GE significantly prevented cancer development and reduced the growth of ERα-negative mouse breast tumors. Dietary GE further enhanced TAM-induced anti-cancer efficacy due at least in part to epigenetic ERα reactivation.

Conclusions

Our studies suggest that soybean genistein can epigenetically restore ERα expression, which in turn increases TAM-dependent anti-estrogen therapeutic sensitivity in vitro and in vivo. The results from our studies reveal a novel therapeutic combination approach using bioactive soybean product and anti-hormone therapy in refractory ERα-negative breast cancer which will provide more effective options in breast cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed
2.
go back to reference Shao W, Brown M: Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res. 2004, 6: 39-52. 10.1186/bcr742PubMedCentralCrossRefPubMed Shao W, Brown M: Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res. 2004, 6: 39-52. 10.1186/bcr742PubMedCentralCrossRefPubMed
3.
go back to reference Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O'Brien K, Wang Y, Hilakivi-Clarke LA: Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene. 2003, 22: 7316-7339. 10.1038/sj.onc.1206937CrossRefPubMed Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O'Brien K, Wang Y, Hilakivi-Clarke LA: Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene. 2003, 22: 7316-7339. 10.1038/sj.onc.1206937CrossRefPubMed
4.
go back to reference McDonnell D, Norris J: Connections and regulation of the human estrogen receptor. Science. 2002, 296: 1642-1644. 10.1126/science.1071884CrossRefPubMed McDonnell D, Norris J: Connections and regulation of the human estrogen receptor. Science. 2002, 296: 1642-1644. 10.1126/science.1071884CrossRefPubMed
6.
go back to reference Ali S, Coombes RC: Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia. 2000, 5: 271-281. 10.1023/A:1009594727358CrossRefPubMed Ali S, Coombes RC: Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia. 2000, 5: 271-281. 10.1023/A:1009594727358CrossRefPubMed
7.
go back to reference Dickson RB, Stancel GM: Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr. 2000, 27: 135-145.CrossRefPubMed Dickson RB, Stancel GM: Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr. 2000, 27: 135-145.CrossRefPubMed
8.
go back to reference Mourits MJ, De Vries EG, Willemse PH, Ten Hoor KA, Hollema H, Van der Zee AG: Tamoxifen treatment and gynecologic side effects: a review. Obstet Gynecol. 2001, 97: 855-866. 10.1016/S0029-7844(00)01196-0CrossRefPubMed Mourits MJ, De Vries EG, Willemse PH, Ten Hoor KA, Hollema H, Van der Zee AG: Tamoxifen treatment and gynecologic side effects: a review. Obstet Gynecol. 2001, 97: 855-866. 10.1016/S0029-7844(00)01196-0CrossRefPubMed
9.
go back to reference Gadducci A, Biglia N, Sismondi P, Genazzani A: Breast cancer and sex steroids: critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer. Gynecol Endocrinol. 2005, 20: 343-360. 10.1080/09513590500128492CrossRefPubMed Gadducci A, Biglia N, Sismondi P, Genazzani A: Breast cancer and sex steroids: critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer. Gynecol Endocrinol. 2005, 20: 343-360. 10.1080/09513590500128492CrossRefPubMed
10.
go back to reference Roodi N, Bailey L, Kao W, Verrier C, Yee C, Dupont W, Parl F: Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J Natl Cancer Inst. 1995, 87: 446-451. 10.1093/jnci/87.6.446CrossRefPubMed Roodi N, Bailey L, Kao W, Verrier C, Yee C, Dupont W, Parl F: Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J Natl Cancer Inst. 1995, 87: 446-451. 10.1093/jnci/87.6.446CrossRefPubMed
11.
go back to reference Lapidus R, Nass S, Butash K, Parl F, Weitzman S, Graff J, Herman J, Davidson N: Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 1998, 58: 2515-2519.PubMed Lapidus R, Nass S, Butash K, Parl F, Weitzman S, Graff J, Herman J, Davidson N: Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 1998, 58: 2515-2519.PubMed
12.
go back to reference Ottaviano Y, Issa J, Parl F, Smith H, Baylin S, Davidson N: Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994, 54: 2552-2555.PubMed Ottaviano Y, Issa J, Parl F, Smith H, Baylin S, Davidson N: Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994, 54: 2552-2555.PubMed
13.
go back to reference Yang X, Phillips D, Ferguson A, Nelson W, Herman J, Davidson N: Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001, 61: 7025-7029.PubMed Yang X, Phillips D, Ferguson A, Nelson W, Herman J, Davidson N: Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001, 61: 7025-7029.PubMed
14.
go back to reference Yang X, Ferguson A, Nass S, Phillips D, Butash K, Wang S, Herman J, Davidson N: Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000, 60: 6890-6894.PubMed Yang X, Ferguson A, Nass S, Phillips D, Butash K, Wang S, Herman J, Davidson N: Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000, 60: 6890-6894.PubMed
15.
go back to reference Bovenzi V, Momparler R: Antineoplastic action of 5-aza-2'-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol. 2001, 48: 71-76. 10.1007/s002800100294CrossRefPubMed Bovenzi V, Momparler R: Antineoplastic action of 5-aza-2'-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol. 2001, 48: 71-76. 10.1007/s002800100294CrossRefPubMed
16.
go back to reference Jang E, Lim S, Lee E, Jeong G, Kim T, Bang Y, Lee J: The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor alpha-negative breast cancer cells to tamoxifen. Oncogene. 2004, 23: 1724-1736. 10.1038/sj.onc.1207315CrossRefPubMed Jang E, Lim S, Lee E, Jeong G, Kim T, Bang Y, Lee J: The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor alpha-negative breast cancer cells to tamoxifen. Oncogene. 2004, 23: 1724-1736. 10.1038/sj.onc.1207315CrossRefPubMed
17.
go back to reference , : Executive summary of the report of the committee on Diet, Nutrition, and Cancer. Assembly of Life Sciences, National Research Council. Cancer Res. 1983, 43: 3018-3023. , : Executive summary of the report of the committee on Diet, Nutrition, and Cancer. Assembly of Life Sciences, National Research Council. Cancer Res. 1983, 43: 3018-3023.
18.
go back to reference Henderson BE, Bernstein L: The international variation in breast cancer rates: an epidemiological assessment. Breast Cancer Res Treat. 1991, 18 (Suppl 1): S11-17.CrossRefPubMed Henderson BE, Bernstein L: The international variation in breast cancer rates: an epidemiological assessment. Breast Cancer Res Treat. 1991, 18 (Suppl 1): S11-17.CrossRefPubMed
19.
go back to reference Messina M, McCaskill-Stevens W, Lampe J: Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst. 2006, 98: 1275-1284. 10.1093/jnci/djj356CrossRefPubMed Messina M, McCaskill-Stevens W, Lampe J: Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst. 2006, 98: 1275-1284. 10.1093/jnci/djj356CrossRefPubMed
20.
go back to reference Barnes S: Effect of genistein on in vitro and in vivo models of cancer. J Nutr. 1995, 125: 777S-783S.PubMed Barnes S: Effect of genistein on in vitro and in vivo models of cancer. J Nutr. 1995, 125: 777S-783S.PubMed
21.
go back to reference Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L: Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA. 1993, 90: 2690-2694. 10.1073/pnas.90.7.2690PubMedCentralCrossRefPubMed Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L: Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA. 1993, 90: 2690-2694. 10.1073/pnas.90.7.2690PubMedCentralCrossRefPubMed
22.
go back to reference Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y: Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun. 1988, 157: 183-189. 10.1016/S0006-291X(88)80030-5CrossRefPubMed Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y: Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun. 1988, 157: 183-189. 10.1016/S0006-291X(88)80030-5CrossRefPubMed
23.
go back to reference Messina MJ, Persky V, Setchell KD, Barnes S: Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994, 21: 113-131. 10.1080/01635589409514310CrossRefPubMed Messina MJ, Persky V, Setchell KD, Barnes S: Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994, 21: 113-131. 10.1080/01635589409514310CrossRefPubMed
24.
go back to reference Shon Y, Park S, Nam K: Effective chemopreventive activity of genistein against human breast cancer cells. J Biochem Mol Biol. 2006, 39: 448-451. 10.5483/BMBRep.2006.39.4.448CrossRefPubMed Shon Y, Park S, Nam K: Effective chemopreventive activity of genistein against human breast cancer cells. J Biochem Mol Biol. 2006, 39: 448-451. 10.5483/BMBRep.2006.39.4.448CrossRefPubMed
25.
go back to reference Fang M, Chen D, Sun Y, Jin Z, Christman J, Yang C: Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005, 11: 7033-7041. 10.1158/1078-0432.CCR-05-0406CrossRefPubMed Fang M, Chen D, Sun Y, Jin Z, Christman J, Yang C: Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005, 11: 7033-7041. 10.1158/1078-0432.CCR-05-0406CrossRefPubMed
26.
go back to reference Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li L, Zhao H, Okino S: Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008, 68: 2736-2744. 10.1158/0008-5472.CAN-07-2290CrossRefPubMed Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li L, Zhao H, Okino S: Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008, 68: 2736-2744. 10.1158/0008-5472.CAN-07-2290CrossRefPubMed
27.
go back to reference Day J, Bauer A, DesBordes C, Zhuang Y, Kim B, Newton L, Nehra V, Forsee K, MacDonald R, Besch-Williford C: Genistein alters methylation patterns in mice. J Nutr. 2002, 132: 2419S-2423S.PubMed Day J, Bauer A, DesBordes C, Zhuang Y, Kim B, Newton L, Nehra V, Forsee K, MacDonald R, Besch-Williford C: Genistein alters methylation patterns in mice. J Nutr. 2002, 132: 2419S-2423S.PubMed
28.
go back to reference Mentor-Marcel R, Lamartiniere C, Eltoum I, Greenberg N, Elgavish A: Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res. 2001, 61: 6777-6782.PubMed Mentor-Marcel R, Lamartiniere C, Eltoum I, Greenberg N, Elgavish A: Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res. 2001, 61: 6777-6782.PubMed
29.
go back to reference Li Y, Liu L, Andrews L, Tollefsbol T: Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer. 2009, 125: 286-296. 10.1002/ijc.24398PubMedCentralCrossRefPubMed Li Y, Liu L, Andrews L, Tollefsbol T: Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer. 2009, 125: 286-296. 10.1002/ijc.24398PubMedCentralCrossRefPubMed
30.
go back to reference Mai Z, Blackburn GL, Zhou JR: Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells. Mol Carcinog. 2007, 46: 534-542. 10.1002/mc.20300PubMedCentralCrossRefPubMed Mai Z, Blackburn GL, Zhou JR: Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells. Mol Carcinog. 2007, 46: 534-542. 10.1002/mc.20300PubMedCentralCrossRefPubMed
31.
go back to reference Mai Z, Blackburn GL, Zhou JR: Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis. 2007, 28: 1217-1223. 10.1093/carcin/bgm004PubMedCentralCrossRefPubMed Mai Z, Blackburn GL, Zhou JR: Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis. 2007, 28: 1217-1223. 10.1093/carcin/bgm004PubMedCentralCrossRefPubMed
32.
go back to reference Li Y, Yuan YY, Meeran SM, Tollefsbol TO: Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer. 2010, 9: 274- 10.1186/1476-4598-9-274PubMedCentralCrossRefPubMed Li Y, Yuan YY, Meeran SM, Tollefsbol TO: Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer. 2010, 9: 274- 10.1186/1476-4598-9-274PubMedCentralCrossRefPubMed
33.
go back to reference Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL: Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006, 114: 567-572. 10.1289/ehp.8700PubMedCentralCrossRefPubMed Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL: Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006, 114: 567-572. 10.1289/ehp.8700PubMedCentralCrossRefPubMed
34.
go back to reference Fritz WA, Wang J, Eltoum IE, Lamartiniere CA: Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol. 2002, 186: 89-99. 10.1016/S0303-7207(01)00663-3CrossRefPubMed Fritz WA, Wang J, Eltoum IE, Lamartiniere CA: Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol. 2002, 186: 89-99. 10.1016/S0303-7207(01)00663-3CrossRefPubMed
35.
go back to reference Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, Wang W, Liu ZY, Calvo A, Couldrey C: The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene. 2000, 19: 1020-1027. 10.1038/sj.onc.1203280CrossRefPubMed Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, Wang W, Liu ZY, Calvo A, Couldrey C: The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene. 2000, 19: 1020-1027. 10.1038/sj.onc.1203280CrossRefPubMed
36.
go back to reference Meeran SM, Patel SN, Chan TH, Tollefsbol TO: A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res (Phila). 2011, 4: 1243-1254. 10.1158/1940-6207.CAPR-11-0009.CrossRef Meeran SM, Patel SN, Chan TH, Tollefsbol TO: A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res (Phila). 2011, 4: 1243-1254. 10.1158/1940-6207.CAPR-11-0009.CrossRef
37.
go back to reference Macaluso M, Cinti C, Russo G, Russo A, Giordano A: pRb2/p130–F4/5-HDAC1-SUV39H1–p300 and pRb2/p130–F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene. 2003, 22: 3511-3517. 10.1038/sj.onc.1206578CrossRefPubMed Macaluso M, Cinti C, Russo G, Russo A, Giordano A: pRb2/p130–F4/5-HDAC1-SUV39H1–p300 and pRb2/p130–F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene. 2003, 22: 3511-3517. 10.1038/sj.onc.1206578CrossRefPubMed
38.
go back to reference Dong JY, Qin LQ: Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2011, 125: 315-323. 10.1007/s10549-010-1270-8CrossRefPubMed Dong JY, Qin LQ: Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2011, 125: 315-323. 10.1007/s10549-010-1270-8CrossRefPubMed
39.
go back to reference Tryndyak VP, Muskhelishvili L, Kovalchuk O, Rodriguez-Juarez R, Montgomery B, Churchwell MI, Ross SA, Beland FA, Pogribny IP: Effect of long-term tamoxifen exposure on genotoxic and epigenetic changes in rat liver: implications for tamoxifen-induced hepatocarcinogenesis. Carcinogenesis. 2006, 27: 1713-1720.CrossRefPubMed Tryndyak VP, Muskhelishvili L, Kovalchuk O, Rodriguez-Juarez R, Montgomery B, Churchwell MI, Ross SA, Beland FA, Pogribny IP: Effect of long-term tamoxifen exposure on genotoxic and epigenetic changes in rat liver: implications for tamoxifen-induced hepatocarcinogenesis. Carcinogenesis. 2006, 27: 1713-1720.CrossRefPubMed
40.
go back to reference Cassidy A, Faughnan M: Phyto-oestrogens through the life cycle. Proc Nutr Soc. 2000, 59: 489-496. 10.1017/S0029665100000719CrossRefPubMed Cassidy A, Faughnan M: Phyto-oestrogens through the life cycle. Proc Nutr Soc. 2000, 59: 489-496. 10.1017/S0029665100000719CrossRefPubMed
41.
go back to reference Belguise K, Guo S, Sonenshein GE: Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Res. 2007, 67: 5763-5770. 10.1158/0008-5472.CAN-06-4327CrossRefPubMed Belguise K, Guo S, Sonenshein GE: Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Res. 2007, 67: 5763-5770. 10.1158/0008-5472.CAN-06-4327CrossRefPubMed
42.
go back to reference Kouzarides T: Chromatin modifications and their function. Cell. 2007, 128: 693-705. 10.1016/j.cell.2007.02.005CrossRefPubMed Kouzarides T: Chromatin modifications and their function. Cell. 2007, 128: 693-705. 10.1016/j.cell.2007.02.005CrossRefPubMed
43.
go back to reference Minucci S, Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006, 6: 38-51. 10.1038/nrc1779CrossRefPubMed Minucci S, Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006, 6: 38-51. 10.1038/nrc1779CrossRefPubMed
44.
go back to reference Olaharski AJ, Ji Z, Woo JY, Lim S, Hubbard AE, Zhang L, Smith MT: The histone deacetylase inhibitor trichostatin a has genotoxic effects in human lymphoblasts in vitro. Toxicol Sci. 2006, 93: 341-347. 10.1093/toxsci/kfl068CrossRefPubMed Olaharski AJ, Ji Z, Woo JY, Lim S, Hubbard AE, Zhang L, Smith MT: The histone deacetylase inhibitor trichostatin a has genotoxic effects in human lymphoblasts in vitro. Toxicol Sci. 2006, 93: 341-347. 10.1093/toxsci/kfl068CrossRefPubMed
45.
go back to reference Sui M, Zhang H, Fan W: The role of estrogen and estrogen receptors in chemoresistance. Curr Med Chem. 2011, 18: 4687-4683.CrossRef Sui M, Zhang H, Fan W: The role of estrogen and estrogen receptors in chemoresistance. Curr Med Chem. 2011, 18: 4687-4683.CrossRef
Metadata
Title
Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer
Authors
Yuanyuan Li
Syed M Meeran
Shweta N Patel
Huaping Chen
Tabitha M Hardy
Trygve O Tollefsbol
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-9

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine