Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Combined p21-activated kinase and farnesyltransferase inhibitor treatment exhibits enhanced anti-proliferative activity on melanoma, colon and lung cancer cell lines

Authors: Giampiero Porcu, Ainslie B Parsons, Daniele Di Giandomenico, Giuseppe Lucisano, Maria Giovanna Mosca, Charles Boone, Antonella Ragnini-Wilson

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Farnesyltransferase inhibitors (FTIs) are anticancer agents with a spectrum of activity in Ras-dependent and independent tumor cellular and xenograph models. How inhibition of protein farnesylation by FTIs results in reduced cancer cell proliferation is poorly understood due to the multiplicity of potential FTase targets. The low toxicity and oral availability of FTIs led to their introduction into clinical trials for the treatment of breast cancer, hematopoietic malignancy, advanced solid tumor and pancreatic cancer treatment, and Hutchinson-Gilford Progeria Syndrome. Although their efficacy in combinatorial therapies with conventional anticancer treatment for myeloid malignancy and solid tumors is promising, the overall results of clinical tests are far below expectations. Further exploitation of FTIs in the clinic will strongly rely on understanding how these drugs affect global cellular activity.

Methods

Using FTase inhibitor I and genome-wide chemical profiling of the yeast barcoded deletion strain collection, we identified genes whose inactivation increases the antiproliferative action of this FTI peptidomimetic. The main findings were validated in a panel of cancer cell lines using FTI-277 in proliferation and biochemical assays paralleled by multiparametric image-based analyses.

Results

ABC transporter Pdr10 or p-21 activated kinase (PAK) gene deletion increases the antiproliferative action of FTase inhibitor I in yeast cells. Consistent with this, enhanced inhibition of cell proliferation by combining group I PAK inhibition, using IPA3, with FTI-277 was observed in melanoma (A375MM), lung (A549) and colon (HT29), but not in epithelial (HeLa) or breast (MCF7), cancer cell lines. Both HeLa and A375MM cells show changes in the nuclear localization of group 1 PAKs in response to FTI-277, but up-regulation of PAK protein levels is observed only in HeLa cells.

Conclusions

Our data support the view that group I PAKs are part of a pro-survival pathway activated by FTI treatment, and group I PAK inactivation potentiates the anti-proliferative action of FTIs in yeast as well as in cancer cells. These findings open new perspectives for the use of FTIs in combinatorial strategies with PAK inhibitors in melanoma, lung and colon malignancy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gibbs JB, Oliff A: The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol. 1997, 37: 143-166. 10.1146/annurev.pharmtox.37.1.143CrossRefPubMed Gibbs JB, Oliff A: The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol. 1997, 37: 143-166. 10.1146/annurev.pharmtox.37.1.143CrossRefPubMed
2.
go back to reference Sebti SM, Hamilton AD: Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene. 2000, 19: 6584-6593. 10.1038/sj.onc.1204146CrossRefPubMed Sebti SM, Hamilton AD: Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene. 2000, 19: 6584-6593. 10.1038/sj.onc.1204146CrossRefPubMed
3.
go back to reference Tamanoi F, Mitsuzawa H: Use of yeast for identification of farnesyltransferase inhibitors and for generation of mutant farnesyltransferases. Methods Enzymol. 1995, 255: 82-91.CrossRefPubMed Tamanoi F, Mitsuzawa H: Use of yeast for identification of farnesyltransferase inhibitors and for generation of mutant farnesyltransferases. Methods Enzymol. 1995, 255: 82-91.CrossRefPubMed
4.
go back to reference Casey PJ, Seabra MC: Protein prenyltransferases. J Biol Chem. 1996, 271: 5289-5292. 10.1074/jbc.271.10.5289CrossRefPubMed Casey PJ, Seabra MC: Protein prenyltransferases. J Biol Chem. 1996, 271: 5289-5292. 10.1074/jbc.271.10.5289CrossRefPubMed
5.
go back to reference Appels NM, Beijnen JH, Schellens JH: Development of farnesyl transferase inhibitors: a review. Oncologist. 2005, 10: 565-578. 10.1634/theoncologist.10-8-565CrossRefPubMed Appels NM, Beijnen JH, Schellens JH: Development of farnesyl transferase inhibitors: a review. Oncologist. 2005, 10: 565-578. 10.1634/theoncologist.10-8-565CrossRefPubMed
6.
go back to reference Karp JE, Lancet JE: Tipifarnib in the treatment of newly diagnosed acute myelogenous leukemia. Biologics. 2008, 2: 491-500.PubMedCentralPubMed Karp JE, Lancet JE: Tipifarnib in the treatment of newly diagnosed acute myelogenous leukemia. Biologics. 2008, 2: 491-500.PubMedCentralPubMed
8.
go back to reference Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y: Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther. 2007, 6: 2092-2102. 10.1158/1535-7163.MCT-07-0148CrossRefPubMed Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y: Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther. 2007, 6: 2092-2102. 10.1158/1535-7163.MCT-07-0148CrossRefPubMed
9.
go back to reference Medeiros BC, Landau HJ, Morrow M, Lockerbie RO, Pitts T, Eckhardt SG: The farnesyl transferase inhibitor, tipifarnib, is a potent inhibitor of the MDR1 gene product, P-glycoprotein, and demonstrates significant cytotoxic synergism against human leukemia cell lines. Leukemia. 2007, 21: 739-746.PubMed Medeiros BC, Landau HJ, Morrow M, Lockerbie RO, Pitts T, Eckhardt SG: The farnesyl transferase inhibitor, tipifarnib, is a potent inhibitor of the MDR1 gene product, P-glycoprotein, and demonstrates significant cytotoxic synergism against human leukemia cell lines. Leukemia. 2007, 21: 739-746.PubMed
10.
go back to reference Porcu G, Wilson C, Di Giandomenico D, Ragnini-Wilson A: A yeast-based genomic strategy highlights the cell protein networks altered by FTase inhibitor peptidomimetics. Mol Cancer. 2010, 9: 197- 10.1186/1476-4598-9-197PubMedCentralCrossRefPubMed Porcu G, Wilson C, Di Giandomenico D, Ragnini-Wilson A: A yeast-based genomic strategy highlights the cell protein networks altered by FTase inhibitor peptidomimetics. Mol Cancer. 2010, 9: 197- 10.1186/1476-4598-9-197PubMedCentralCrossRefPubMed
11.
go back to reference Basso AD, Kirschmeier P, Bishop WR: Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res. 2006, 47: 15-31.CrossRefPubMed Basso AD, Kirschmeier P, Bishop WR: Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res. 2006, 47: 15-31.CrossRefPubMed
12.
go back to reference Robak T, Szmigielska-Kapłon A, Pluta A, Grzybowska-Izydorczyk O, Wolska A, Czemerska M, Wierzbowska A: Novel and emerging drugs for acute myeloid leukemia: pharmacology and therapeutic activity. Curr Med Chem. 2011, 18: 638-666. 10.2174/092986711794480104CrossRefPubMed Robak T, Szmigielska-Kapłon A, Pluta A, Grzybowska-Izydorczyk O, Wolska A, Czemerska M, Wierzbowska A: Novel and emerging drugs for acute myeloid leukemia: pharmacology and therapeutic activity. Curr Med Chem. 2011, 18: 638-666. 10.2174/092986711794480104CrossRefPubMed
13.
go back to reference Sparano JA, Moulder S, Kazi A, Coppola D, Negassa A, Vahdat L, Li T, Pellegrino C, Fineberg S, Munster P, Malafa M, Lee D, Hoschander S, Hopkins U, Hershman D, Wright JJ, Kleer C, Merajver S, Sebti SM: Phase II trial of tipifarnib plus neoadjuvant doxorubicin-cyclophosphamide in patients with clinical stage IIB-IIIC breast cancer. Clin Cancer Res. 2009, 15: 2942-2948. 10.1158/1078-0432.CCR-08-2658PubMedCentralCrossRefPubMed Sparano JA, Moulder S, Kazi A, Coppola D, Negassa A, Vahdat L, Li T, Pellegrino C, Fineberg S, Munster P, Malafa M, Lee D, Hoschander S, Hopkins U, Hershman D, Wright JJ, Kleer C, Merajver S, Sebti SM: Phase II trial of tipifarnib plus neoadjuvant doxorubicin-cyclophosphamide in patients with clinical stage IIB-IIIC breast cancer. Clin Cancer Res. 2009, 15: 2942-2948. 10.1158/1078-0432.CCR-08-2658PubMedCentralCrossRefPubMed
14.
go back to reference Niessner H, Beck D, Sinnberg T, Lasithiotakis K, Maczey E, Gogel J, Venturelli S, Berger A, Mauthe M, Toulany M, Flaherty K, Schaller M, Schadendorf D, Proikas-Cezanne T, Schittek B, Garbe C, Kulms D, Meier F: The farnesyltransferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. J Invest Dermatol. 2011, 131: 468-479. 10.1038/jid.2010.297CrossRefPubMed Niessner H, Beck D, Sinnberg T, Lasithiotakis K, Maczey E, Gogel J, Venturelli S, Berger A, Mauthe M, Toulany M, Flaherty K, Schaller M, Schadendorf D, Proikas-Cezanne T, Schittek B, Garbe C, Kulms D, Meier F: The farnesyltransferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. J Invest Dermatol. 2011, 131: 468-479. 10.1038/jid.2010.297CrossRefPubMed
15.
go back to reference Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y: A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A. 2004, 101: 12479-12484. 10.1073/pnas.0403413101PubMedCentralCrossRefPubMed Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y: A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A. 2004, 101: 12479-12484. 10.1073/pnas.0403413101PubMedCentralCrossRefPubMed
16.
go back to reference Raponi M, Belly RT, Karp JE, Lancet JE, Atkins D, Wang Y: Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia. BMC Cancer. 2008, 4: 56-CrossRef Raponi M, Belly RT, Karp JE, Lancet JE, Atkins D, Wang Y: Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia. BMC Cancer. 2008, 4: 56-CrossRef
17.
go back to reference Raponi M, Lancet JE, Fan H, Dossey L, Lee G, Gojo I, Feldman EJ, Gotlib J, Morris LE, Greenberg PL, Wright JJ, Harousseau JL, Löwenberg B, Stone RM, De Porre P, Wang Y, Karp JE: A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood. 2008, 111: 2589-2596. 10.1182/blood-2007-09-112730CrossRefPubMed Raponi M, Lancet JE, Fan H, Dossey L, Lee G, Gojo I, Feldman EJ, Gotlib J, Morris LE, Greenberg PL, Wright JJ, Harousseau JL, Löwenberg B, Stone RM, De Porre P, Wang Y, Karp JE: A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood. 2008, 111: 2589-2596. 10.1182/blood-2007-09-112730CrossRefPubMed
18.
go back to reference Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR: An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008, 15: 322-331. 10.1016/j.chembiol.2008.03.005PubMedCentralCrossRefPubMed Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR: An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008, 15: 322-331. 10.1016/j.chembiol.2008.03.005PubMedCentralCrossRefPubMed
19.
go back to reference Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G: GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 1997, 57: 1846-1850.PubMed Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G: GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 1997, 57: 1846-1850.PubMed
20.
go back to reference Egner R, Mahé Y, Pandjaitan R, Kuchler K: Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae. Mol Cell Biol. 1995, 15: 5879-5887.PubMedCentralCrossRefPubMed Egner R, Mahé Y, Pandjaitan R, Kuchler K: Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae. Mol Cell Biol. 1995, 15: 5879-5887.PubMedCentralCrossRefPubMed
21.
go back to reference Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG: A protein interaction map for cell polarity development. J Cell Biol. 2001, 154: 549-571. 10.1083/jcb.200104057PubMedCentralCrossRefPubMed Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG: A protein interaction map for cell polarity development. J Cell Biol. 2001, 154: 549-571. 10.1083/jcb.200104057PubMedCentralCrossRefPubMed
22.
go back to reference Dummler B, Ohshiro K, Kumar R, Field J: Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009, 28: 51-63. 10.1007/s10555-008-9168-1PubMedCentralCrossRefPubMed Dummler B, Ohshiro K, Kumar R, Field J: Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009, 28: 51-63. 10.1007/s10555-008-9168-1PubMedCentralCrossRefPubMed
24.
go back to reference Hofmann C, Shepelev M, Chernoff J: The genetics of Pak. J Cell Sci. 2004, 117: 4343-4354. 10.1242/jcs.01392CrossRefPubMed Hofmann C, Shepelev M, Chernoff J: The genetics of Pak. J Cell Sci. 2004, 117: 4343-4354. 10.1242/jcs.01392CrossRefPubMed
25.
26.
go back to reference Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N: A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res. 1995, 55: 5302-5309.PubMed Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N: A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res. 1995, 55: 5302-5309.PubMed
27.
go back to reference Böhnke A, Westphal F, Schmidt A, El-Awady RA, Dahm-Daphi J: Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumor cells. Int J Radiat Biol. 2004, 80: 53-63. 10.1080/09553000310001642902CrossRefPubMed Böhnke A, Westphal F, Schmidt A, El-Awady RA, Dahm-Daphi J: Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumor cells. Int J Radiat Biol. 2004, 80: 53-63. 10.1080/09553000310001642902CrossRefPubMed
28.
go back to reference Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R: Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell. 2003, 14: 1074-1084. 10.1091/mbc.E02-05-0308PubMedCentralCrossRefPubMed Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R: Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell. 2003, 14: 1074-1084. 10.1091/mbc.E02-05-0308PubMedCentralCrossRefPubMed
29.
go back to reference Kozlowski JM, Hart IR, Fidler IJ, Hanna N: A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. J Natl Cancer Inst. 1984, 72: 913-917.PubMed Kozlowski JM, Hart IR, Fidler IJ, Hanna N: A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. J Natl Cancer Inst. 1984, 72: 913-917.PubMed
30.
go back to reference Sumimoto H, Imabayashi F, Iwata T, Kawakami Y: The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006, 203: 1651-1656. 10.1084/jem.20051848PubMedCentralCrossRefPubMed Sumimoto H, Imabayashi F, Iwata T, Kawakami Y: The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006, 203: 1651-1656. 10.1084/jem.20051848PubMedCentralCrossRefPubMed
31.
go back to reference Lee J, Lee I, Han B, Park JO, Jang J, Park C, Kang WK: Effect of simvastatin on cetuximab resistance in human colorectal cancer with KRAS mutations. J Natl Cancer Inst. 2011, 103: 674-688. 10.1093/jnci/djr070CrossRefPubMed Lee J, Lee I, Han B, Park JO, Jang J, Park C, Kang WK: Effect of simvastatin on cetuximab resistance in human colorectal cancer with KRAS mutations. J Natl Cancer Inst. 2011, 103: 674-688. 10.1093/jnci/djr070CrossRefPubMed
32.
go back to reference Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A, Blandino G, Haupt Y: Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res. 2009, 69: 4818-4826. 10.1158/0008-5472.CAN-08-4010CrossRefPubMed Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A, Blandino G, Haupt Y: Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res. 2009, 69: 4818-4826. 10.1158/0008-5472.CAN-08-4010CrossRefPubMed
33.
go back to reference Yoon YK, Kim HP, Han SW, Oh do Y, Im SA, Bang YJ, Kim TY: KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: implication for combinatorial approach. Mol Carcinog. 2010, 49: 353-362. 10.1002/mc.20607CrossRefPubMed Yoon YK, Kim HP, Han SW, Oh do Y, Im SA, Bang YJ, Kim TY: KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: implication for combinatorial approach. Mol Carcinog. 2010, 49: 353-362. 10.1002/mc.20607CrossRefPubMed
34.
go back to reference Wu G, Xing M, Mambo E, Huang X, Liu J, Guo Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S, Trink B, Sidransky D: Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 2005, 7: R609-R616. 10.1186/bcr1262PubMedCentralCrossRefPubMed Wu G, Xing M, Mambo E, Huang X, Liu J, Guo Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S, Trink B, Sidransky D: Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 2005, 7: R609-R616. 10.1186/bcr1262PubMedCentralCrossRefPubMed
35.
go back to reference Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, Mandal M, Kumar R: p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep. 2002, 3: 767-773. 10.1093/embo-reports/kvf157PubMedCentralCrossRefPubMed Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, Mandal M, Kumar R: p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep. 2002, 3: 767-773. 10.1093/embo-reports/kvf157PubMedCentralCrossRefPubMed
36.
go back to reference Zhao ZS, Lim JP, Ng YW, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005, 20: 237-249. 10.1016/j.molcel.2005.08.035CrossRefPubMed Zhao ZS, Lim JP, Ng YW, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005, 20: 237-249. 10.1016/j.molcel.2005.08.035CrossRefPubMed
37.
go back to reference Ando Y, Yasuda S, Oceguera-Yanez F, Narumiya S: Inactivation of Rho GTPases with Clostridium difficile Toxin B Impairs Centrosomal Activation of Aurora-A in G2/M Transition of HeLa Cells. Mol Biol Cell. 2007, 18: 3752-3763. 10.1091/mbc.E07-03-0281PubMedCentralCrossRefPubMed Ando Y, Yasuda S, Oceguera-Yanez F, Narumiya S: Inactivation of Rho GTPases with Clostridium difficile Toxin B Impairs Centrosomal Activation of Aurora-A in G2/M Transition of HeLa Cells. Mol Biol Cell. 2007, 18: 3752-3763. 10.1091/mbc.E07-03-0281PubMedCentralCrossRefPubMed
38.
go back to reference Zhao ZS, Manser E, Loo TH, Lim L: Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol. 2000, 20: 6354-6363. 10.1128/MCB.20.17.6354-6363.2000PubMedCentralCrossRefPubMed Zhao ZS, Manser E, Loo TH, Lim L: Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol. 2000, 20: 6354-6363. 10.1128/MCB.20.17.6354-6363.2000PubMedCentralCrossRefPubMed
39.
go back to reference Ziegler WH, Liddington RC, Critchley DR: The structure and regulation of vinculin. Trends Cell Biol. 2006, 16: 453-460. 10.1016/j.tcb.2006.07.004CrossRefPubMed Ziegler WH, Liddington RC, Critchley DR: The structure and regulation of vinculin. Trends Cell Biol. 2006, 16: 453-460. 10.1016/j.tcb.2006.07.004CrossRefPubMed
40.
go back to reference Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR: Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol. 2006, 85: 487-500. 10.1016/j.ejcb.2006.01.014CrossRefPubMed Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR: Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol. 2006, 85: 487-500. 10.1016/j.ejcb.2006.01.014CrossRefPubMed
41.
go back to reference Doisneau-Sixou SF, Cestac P, Faye JC, Favre G, Sutherland RL: Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell-cycle progression. Int J Cancer. 2003, 106: 789-798. 10.1002/ijc.11263CrossRefPubMed Doisneau-Sixou SF, Cestac P, Faye JC, Favre G, Sutherland RL: Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell-cycle progression. Int J Cancer. 2003, 106: 789-798. 10.1002/ijc.11263CrossRefPubMed
43.
go back to reference Flaiz C, Chernoff J, Ammoun S, Peterson JR, Hanemann CO: PAK kinase regulates Rac GTPase and is a potential target in human schwannomas. Exp Neurol. 2009, 218: 137-144. 10.1016/j.expneurol.2009.04.019PubMedCentralCrossRefPubMed Flaiz C, Chernoff J, Ammoun S, Peterson JR, Hanemann CO: PAK kinase regulates Rac GTPase and is a potential target in human schwannomas. Exp Neurol. 2009, 218: 137-144. 10.1016/j.expneurol.2009.04.019PubMedCentralCrossRefPubMed
44.
go back to reference Kumazaki T, Robetorye RS, Robetorye SC, Smith JR: Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp Cell Res. 1991, 195: 13-19. 10.1016/0014-4827(91)90494-FCrossRefPubMed Kumazaki T, Robetorye RS, Robetorye SC, Smith JR: Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp Cell Res. 1991, 195: 13-19. 10.1016/0014-4827(91)90494-FCrossRefPubMed
45.
go back to reference Fletcher JI, Haber M, Henderson MJ, Norris MD: ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010, 10: 147-156. 10.1038/nrc2789CrossRefPubMed Fletcher JI, Haber M, Henderson MJ, Norris MD: ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010, 10: 147-156. 10.1038/nrc2789CrossRefPubMed
46.
go back to reference Wu CP, Hsieh CH, Wu YS: The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm. 2011, 8: 1996-2011. 10.1021/mp200261nCrossRefPubMed Wu CP, Hsieh CH, Wu YS: The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm. 2011, 8: 1996-2011. 10.1021/mp200261nCrossRefPubMed
47.
go back to reference Rockwell NC, Wolfger H, Kuchler K, Thorner J: ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol. 2009, 229: 27-52. 10.1007/s00232-009-9173-5PubMedCentralCrossRefPubMed Rockwell NC, Wolfger H, Kuchler K, Thorner J: ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol. 2009, 229: 27-52. 10.1007/s00232-009-9173-5PubMedCentralCrossRefPubMed
48.
go back to reference Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A: The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol. 2001, 3: 207-214.PubMed Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A: The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol. 2001, 3: 207-214.PubMed
49.
go back to reference Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC: Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell. 2003, 14: 1240-1254. 10.1091/mbc.E02-08-0501PubMedCentralCrossRefPubMed Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC: Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell. 2003, 14: 1240-1254. 10.1091/mbc.E02-08-0501PubMedCentralCrossRefPubMed
50.
go back to reference Souid AK, Gao C, Wang L, Milgrom E, Shen WC: ELM1 is required for multidrug resistance in Saccharomyces cerevisiae. Genetics. 2006, 173: 1919-1937. 10.1534/genetics.106.057596PubMedCentralCrossRefPubMed Souid AK, Gao C, Wang L, Milgrom E, Shen WC: ELM1 is required for multidrug resistance in Saccharomyces cerevisiae. Genetics. 2006, 173: 1919-1937. 10.1534/genetics.106.057596PubMedCentralCrossRefPubMed
51.
go back to reference Huynh N, Yim M, Chernoff J, Shulkes A, Baldwin GS, He H: p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2013, 304: G561-G567. 10.1152/ajpgi.00218.2012PubMedCentralCrossRefPubMed Huynh N, Yim M, Chernoff J, Shulkes A, Baldwin GS, He H: p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2013, 304: G561-G567. 10.1152/ajpgi.00218.2012PubMedCentralCrossRefPubMed
52.
go back to reference Pavey S, Zuidervaart W, van Nieuwpoort F, Packer L, Jager M, Gruis N, Hayward N: Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma. Melanoma Res. 2006, 16: 285-296. 10.1097/01.cmr.0000222589.30117.f2CrossRefPubMed Pavey S, Zuidervaart W, van Nieuwpoort F, Packer L, Jager M, Gruis N, Hayward N: Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma. Melanoma Res. 2006, 16: 285-296. 10.1097/01.cmr.0000222589.30117.f2CrossRefPubMed
53.
go back to reference Faure S, Vigneron S, Dorée M, Morin N: A member of the Ste20/PAK family of protein kinases is involved in both arrest of Xenopus oocytes at G2/prophase of the first meiotic cell cycle and in prevention of apoptosis. EMBO J. 1997, 16: 5550-5561. 10.1093/emboj/16.18.5550PubMedCentralCrossRefPubMed Faure S, Vigneron S, Dorée M, Morin N: A member of the Ste20/PAK family of protein kinases is involved in both arrest of Xenopus oocytes at G2/prophase of the first meiotic cell cycle and in prevention of apoptosis. EMBO J. 1997, 16: 5550-5561. 10.1093/emboj/16.18.5550PubMedCentralCrossRefPubMed
54.
go back to reference Wagner W, Bielli P, Wacha S, Ragnini-Wilson A: Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J. 2002, 21: 6397-6408. 10.1093/emboj/cdf650PubMedCentralCrossRefPubMed Wagner W, Bielli P, Wacha S, Ragnini-Wilson A: Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J. 2002, 21: 6397-6408. 10.1093/emboj/cdf650PubMedCentralCrossRefPubMed
55.
go back to reference Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C: Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006, 126: 611-625. 10.1016/j.cell.2006.06.040CrossRefPubMed Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C: Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006, 126: 611-625. 10.1016/j.cell.2006.06.040CrossRefPubMed
56.
go back to reference Kamada Y, Jung US, Piotrowski J, Levin DE: The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 1995, 9: 1559-1571. 10.1101/gad.9.13.1559CrossRefPubMed Kamada Y, Jung US, Piotrowski J, Levin DE: The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 1995, 9: 1559-1571. 10.1101/gad.9.13.1559CrossRefPubMed
57.
go back to reference Casavola EC, Catucci A, Bielli P, Di Pentima A, Porcu G, Pennestri M, Cicero DO, Ragnini-Wilson A: Ypt32p and Mlc1p bind within the vesicle binding region of the class V myosin Myo2p globular tail domain. Mol Microbiol. 2008, 67: 1051-1066. 10.1111/j.1365-2958.2008.06106.xCrossRefPubMed Casavola EC, Catucci A, Bielli P, Di Pentima A, Porcu G, Pennestri M, Cicero DO, Ragnini-Wilson A: Ypt32p and Mlc1p bind within the vesicle binding region of the class V myosin Myo2p globular tail domain. Mol Microbiol. 2008, 67: 1051-1066. 10.1111/j.1365-2958.2008.06106.xCrossRefPubMed
58.
go back to reference Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901CrossRefPubMed Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901CrossRefPubMed
59.
go back to reference Sacco F, Gherardini PF, Paoluzi S, Saez-Rodriguez J, Helmer-Citterich M, Ragnini-Wilson A, Castagnoli L, Cesareni G: Mapping the human phosphatome on growth pathways. Mol Syst Biol. 2012, 8: 603-PubMedCentralCrossRefPubMed Sacco F, Gherardini PF, Paoluzi S, Saez-Rodriguez J, Helmer-Citterich M, Ragnini-Wilson A, Castagnoli L, Cesareni G: Mapping the human phosphatome on growth pathways. Mol Syst Biol. 2012, 8: 603-PubMedCentralCrossRefPubMed
Metadata
Title
Combined p21-activated kinase and farnesyltransferase inhibitor treatment exhibits enhanced anti-proliferative activity on melanoma, colon and lung cancer cell lines
Authors
Giampiero Porcu
Ainslie B Parsons
Daniele Di Giandomenico
Giuseppe Lucisano
Maria Giovanna Mosca
Charles Boone
Antonella Ragnini-Wilson
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-88

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine