Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells

Author: Daniel S Straus

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Inflammation is a well-known etiological factor for colorectal cancer, but mechanisms underlying the linkage between inflammation and cancer are incompletely understood. We hypothesized that two pro-inflammatory cytokines, TNFα and IL-17, might play a role in promoting colorectal carcinogenesis. Aerobic glycolysis is a metabolic adaptation that promotes the survival/proliferation of cancer cells. Paracrine signaling between tumor cells and cancer-associated fibroblasts also plays a role in carcinogenesis.

Methods

The effect of TNFα and IL-17 on aerobic glycolysis and growth factor production in cultured human colorectal cancer cells was investigated. Glucose utilization and lactate production were quantified by measuring the disappearance of glucose and appearance of lactate in the culture medium. Glucose transporter and glycolytic enzyme expression levels were measured by immunoblotting.

Results

TNFα and IL-17 cooperatively stimulated glycolysis in HT-29, T84, Caco-2 and HCT116 colorectal cancer cells. Treatment of HT-29 cells with TNFα plus IL-17 also increased the expression of HIF-1α and c-myc, two factors know to induce the transcription of genes encoding components of the glycolytic pathway. To further investigate mechanisms for cytokine-stimulated glycolysis, the effects of TNFα and IL-17 on expression of six members and one regulator of the glycolytic pathway were investigated. TNFα and IL-17 cooperatively increased the expression of the glucose transporter SLC2A1 and hexokinase-2 but did not regulate expression of glucose transporter SLC2A3, enolase-1, pyruvate kinase M2, lactate dehydrogenase A, or 6-phoshofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). Experiments with inhibitors indicated that HIF-1α played a role in induction of SLC2A1 and that the transcription factor NF-κB played a role in induction of hexokinase-2 by TNFα and IL-17. TNFα and IL-17 also synergistically stimulated production by HT-29 cells of a growth factor that simulated proliferation/survival of NIL8 fibroblastic cells. The activity of this factor was not specifically inhibited by the EGFR inhibitor AG1478, indicating that it is not an EGFR ligand.

Conclusions

Chronic inflammation is known to promote colorectal tumorigenesis. The pro-inflammatory cytokines TNFα and IL-17 may contribute to this effect by stimulating glycolysis and growth factor production in colorectal cancer cells.
Appendix
Available only for authorised users
Literature
2.
go back to reference Trinchieri G: Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012, 30: 677-706. 10.1146/annurev-immunol-020711-075008CrossRefPubMed Trinchieri G: Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012, 30: 677-706. 10.1146/annurev-immunol-020711-075008CrossRefPubMed
3.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics. CA Canc J Clin. 2010, 60: 277-300. 10.3322/caac.20073. 10.3322/caac.20073CrossRef Jemal A, Siegel R, Xu J, Ward E: Cancer statistics. CA Canc J Clin. 2010, 60: 277-300. 10.3322/caac.20073. 10.3322/caac.20073CrossRef
4.
go back to reference Terzić J, Grivennikov S, Karin E, Karin M: Inflammation and colon cancer. Gastroenterology. 2010, 138: 2101-2114. 10.1053/j.gastro.2010.01.058CrossRefPubMed Terzić J, Grivennikov S, Karin E, Karin M: Inflammation and colon cancer. Gastroenterology. 2010, 138: 2101-2114. 10.1053/j.gastro.2010.01.058CrossRefPubMed
5.
go back to reference Ullman TA, Itzkowitz SH: Intestinal inflammation and cancer. Gastroenterology. 2011, 140: 1807-1816. 10.1053/j.gastro.2011.01.057CrossRefPubMed Ullman TA, Itzkowitz SH: Intestinal inflammation and cancer. Gastroenterology. 2011, 140: 1807-1816. 10.1053/j.gastro.2011.01.057CrossRefPubMed
6.
go back to reference Wang D, Dubois RN: The role of anti-inflammatory drugs in colorectal cancer. Annu Rev Med. 2013, 64: 131-144. 10.1146/annurev-med-112211-154330CrossRefPubMed Wang D, Dubois RN: The role of anti-inflammatory drugs in colorectal cancer. Annu Rev Med. 2013, 64: 131-144. 10.1146/annurev-med-112211-154330CrossRefPubMed
7.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809PubMedCentralCrossRefPubMed Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809PubMedCentralCrossRefPubMed
8.
go back to reference Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134: 703-707. 10.1016/j.cell.2008.08.021CrossRefPubMed Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134: 703-707. 10.1016/j.cell.2008.08.021CrossRefPubMed
9.
go back to reference Kaelin WG, Thompson CB: Q&A: Cancer: clues from cell metabolism. Nature. 2010, 465: 562-564. 10.1038/465562aCrossRefPubMed Kaelin WG, Thompson CB: Q&A: Cancer: clues from cell metabolism. Nature. 2010, 465: 562-564. 10.1038/465562aCrossRefPubMed
10.
go back to reference Hirschhaeuser F, Sattler UG, Mueller-Klieser W: Lactate: a metabolic key player in cancer. Cancer Res. 2011, 71: 6921-6925. 10.1158/0008-5472.CAN-11-1457CrossRefPubMed Hirschhaeuser F, Sattler UG, Mueller-Klieser W: Lactate: a metabolic key player in cancer. Cancer Res. 2011, 71: 6921-6925. 10.1158/0008-5472.CAN-11-1457CrossRefPubMed
12.
13.
go back to reference DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7: 11-20. 10.1016/j.cmet.2007.10.002CrossRefPubMed DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7: 11-20. 10.1016/j.cmet.2007.10.002CrossRefPubMed
14.
go back to reference Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000, 275: 21797-21800. 10.1074/jbc.C000023200CrossRefPubMed Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000, 275: 21797-21800. 10.1074/jbc.C000023200CrossRefPubMed
15.
go back to reference Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV: Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004, 24: 5923-5936. 10.1128/MCB.24.13.5923-5936.2004PubMedCentralCrossRefPubMed Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV: Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004, 24: 5923-5936. 10.1128/MCB.24.13.5923-5936.2004PubMedCentralCrossRefPubMed
16.
go back to reference Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E: Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002, 277: 27975-27981. 10.1074/jbc.M204152200CrossRefPubMed Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E: Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002, 277: 27975-27981. 10.1074/jbc.M204152200CrossRefPubMed
17.
go back to reference Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60: 1541-1545.PubMed Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60: 1541-1545.PubMed
18.
go back to reference Scharte M, Han X, Bertges DJ, Fink MP, Delude RL: Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol. 2003, 284: G373-G384.CrossRefPubMed Scharte M, Han X, Bertges DJ, Fink MP, Delude RL: Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol. 2003, 284: G373-G384.CrossRefPubMed
19.
go back to reference Jiang H, Zhu YS, Xu H, Sun Y, Li QF: Inflammatory stimulation and hypoxia cooperatively activate HIF-1{alpha} in bronchial epithelial cells: involvement of PI3K and NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol. 2010, 298: L660-L669. 10.1152/ajplung.00394.2009CrossRefPubMed Jiang H, Zhu YS, Xu H, Sun Y, Li QF: Inflammatory stimulation and hypoxia cooperatively activate HIF-1{alpha} in bronchial epithelial cells: involvement of PI3K and NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol. 2010, 298: L660-L669. 10.1152/ajplung.00394.2009CrossRefPubMed
20.
go back to reference Hot A, Zrioual S, Lenief V, Miossec P: IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann Rheum Dis. 2012, 71: 1393-1401. 10.1136/annrheumdis-2011-200867CrossRefPubMed Hot A, Zrioual S, Lenief V, Miossec P: IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann Rheum Dis. 2012, 71: 1393-1401. 10.1136/annrheumdis-2011-200867CrossRefPubMed
21.
go back to reference Ford AC, Sandborn WJ, Khan KJ, Hanauer SB, Talley NJ, Moayyedi P: Efficacy of biological therapies in inflammatory bowel disease: systematic review and meta-analysis. Am J Gastroenterol. 2011, 106: 644-659. 10.1038/ajg.2011.73CrossRefPubMed Ford AC, Sandborn WJ, Khan KJ, Hanauer SB, Talley NJ, Moayyedi P: Efficacy of biological therapies in inflammatory bowel disease: systematic review and meta-analysis. Am J Gastroenterol. 2011, 106: 644-659. 10.1038/ajg.2011.73CrossRefPubMed
22.
go back to reference Pearson C, Uhlig HH, Powrie F: Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol. 2012, 33: 289-296. 10.1016/j.it.2012.04.004CrossRefPubMed Pearson C, Uhlig HH, Powrie F: Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol. 2012, 33: 289-296. 10.1016/j.it.2012.04.004CrossRefPubMed
23.
go back to reference Cherrier M, Ohnmacht C, Cording S, Eberl G: Development and function of intestinal innate lymphoid cells. Curr Opin Immunol. 2012, 24: 277-283. 10.1016/j.coi.2012.03.011CrossRefPubMed Cherrier M, Ohnmacht C, Cording S, Eberl G: Development and function of intestinal innate lymphoid cells. Curr Opin Immunol. 2012, 24: 277-283. 10.1016/j.coi.2012.03.011CrossRefPubMed
24.
go back to reference Sallusto F, Zielinski CE, Lanzavecchia A: Human Th17 subsets. Eur J Immunol. 2012, 42: 2215-2220. 10.1002/eji.201242741CrossRefPubMed Sallusto F, Zielinski CE, Lanzavecchia A: Human Th17 subsets. Eur J Immunol. 2012, 42: 2215-2220. 10.1002/eji.201242741CrossRefPubMed
25.
go back to reference Geremia A, Jewell DP: The IL-23/IL-17 pathway in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2012, 6: 223-237. 10.1586/egh.11.107CrossRefPubMed Geremia A, Jewell DP: The IL-23/IL-17 pathway in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2012, 6: 223-237. 10.1586/egh.11.107CrossRefPubMed
26.
go back to reference Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G: Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol. 2010, 184: 1630-1641. 10.4049/jimmunol.0902813CrossRefPubMed Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G: Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol. 2010, 184: 1630-1641. 10.4049/jimmunol.0902813CrossRefPubMed
27.
go back to reference Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011, 71: 1263-1271. 10.1158/0008-5472.CAN-10-2907CrossRefPubMed Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011, 71: 1263-1271. 10.1158/0008-5472.CAN-10-2907CrossRefPubMed
28.
go back to reference Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012, 49: 254-258. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012, 49: 254-258.
29.
go back to reference Numata A, Minagawa T, Asano M, Nakane A, Katoh H, Tanabe T: Functional evaluation of tumor-infiltrating mononuclear cells. Detection of endogenous interferon-gamma and tumor necrosis factor-alpha in human colorectal adenocarcinomas. Cancer. 1991, 68: 1937-1943. 10.1002/1097-0142(19911101)68:9<1937::AID-CNCR2820680916>3.0.CO;2-DCrossRefPubMed Numata A, Minagawa T, Asano M, Nakane A, Katoh H, Tanabe T: Functional evaluation of tumor-infiltrating mononuclear cells. Detection of endogenous interferon-gamma and tumor necrosis factor-alpha in human colorectal adenocarcinomas. Cancer. 1991, 68: 1937-1943. 10.1002/1097-0142(19911101)68:9<1937::AID-CNCR2820680916>3.0.CO;2-DCrossRefPubMed
30.
go back to reference Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K, Straus DS: Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol. 2008, 181: 6536-6545.CrossRefPubMed Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K, Straus DS: Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol. 2008, 181: 6536-6545.CrossRefPubMed
31.
go back to reference Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D: Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol. 2012, 91: 377-383. 10.1189/jlb.0811404PubMedCentralCrossRefPubMed Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D: Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol. 2012, 91: 377-383. 10.1189/jlb.0811404PubMedCentralCrossRefPubMed
32.
go back to reference Weinberg RA: The Biology of Cancer. 2007, 527-556. New York, NY: Garland Science, Weinberg RA: The Biology of Cancer. 2007, 527-556. New York, NY: Garland Science,
33.
go back to reference Räsänen K, Vaheri A: Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010, 316: 2713-2722. 10.1016/j.yexcr.2010.04.032CrossRefPubMed Räsänen K, Vaheri A: Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010, 316: 2713-2722. 10.1016/j.yexcr.2010.04.032CrossRefPubMed
34.
go back to reference Allen M, Louise Jones J: Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011, 223: 162-176.PubMed Allen M, Louise Jones J: Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011, 223: 162-176.PubMed
35.
go back to reference Cirri P, Chiarugi P: Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012, 31: 195-208. 10.1007/s10555-011-9340-xCrossRefPubMed Cirri P, Chiarugi P: Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012, 31: 195-208. 10.1007/s10555-011-9340-xCrossRefPubMed
36.
go back to reference Hwang RF, Moore TT, Hattersley MM, Scarpitti M, Yang B, Devereaux E, Ramachandran V, Arumugam T, Ji B, Logsdon CD, Brown JL, Godin R: Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Canc Res. 2012, 10: 1147-1157. 10.1158/1541-7786.MCR-12-0022.CrossRef Hwang RF, Moore TT, Hattersley MM, Scarpitti M, Yang B, Devereaux E, Ramachandran V, Arumugam T, Ji B, Logsdon CD, Brown JL, Godin R: Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Canc Res. 2012, 10: 1147-1157. 10.1158/1541-7786.MCR-12-0022.CrossRef
37.
go back to reference Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK: The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell. 2006, 124: 1225-1239. 10.1016/j.cell.2006.01.041CrossRefPubMed Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK: The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell. 2006, 124: 1225-1239. 10.1016/j.cell.2006.01.041CrossRefPubMed
38.
go back to reference Boerner P, Resnick RJ, Racker E: Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor. Proc Natl Acad Sci USA. 1985, 82: 1350-1353. 10.1073/pnas.82.5.1350PubMedCentralCrossRefPubMed Boerner P, Resnick RJ, Racker E: Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor. Proc Natl Acad Sci USA. 1985, 82: 1350-1353. 10.1073/pnas.82.5.1350PubMedCentralCrossRefPubMed
39.
go back to reference Conricode KM, Ochs RS: Epidermal growth factor and 12-O-tetradecanoylphorbol 13-acetate stimulate lactate production and the pentose phosphate pathway in freshly isolated rat hepatocytes. J Biol Chem. 1990, 265: 20931-20937.PubMed Conricode KM, Ochs RS: Epidermal growth factor and 12-O-tetradecanoylphorbol 13-acetate stimulate lactate production and the pentose phosphate pathway in freshly isolated rat hepatocytes. J Biol Chem. 1990, 265: 20931-20937.PubMed
40.
go back to reference Daub H, Weiss FU, Wallasch C, Ullrich A: Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996, 379: 557-560. 10.1038/379557a0CrossRefPubMed Daub H, Weiss FU, Wallasch C, Ullrich A: Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996, 379: 557-560. 10.1038/379557a0CrossRefPubMed
41.
go back to reference Rozengurt E: Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007, 213: 589-602. 10.1002/jcp.21246CrossRefPubMed Rozengurt E: Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007, 213: 589-602. 10.1002/jcp.21246CrossRefPubMed
42.
go back to reference Obach M, Navarro-Sabaté A, Caro J, Kong X, Duran J, Gómez M, Perales JC, Ventura F, Rosa JL, Bartrons R: 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem. 2004, 279: 53562-53570. 10.1074/jbc.M406096200CrossRefPubMed Obach M, Navarro-Sabaté A, Caro J, Kong X, Duran J, Gómez M, Perales JC, Ventura F, Rosa JL, Bartrons R: 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem. 2004, 279: 53562-53570. 10.1074/jbc.M406096200CrossRefPubMed
43.
go back to reference Xia X, Kung AL: Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol. 2009, 10: R113- 10.1186/gb-2009-10-10-r113PubMedCentralCrossRefPubMed Xia X, Kung AL: Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol. 2009, 10: R113- 10.1186/gb-2009-10-10-r113PubMedCentralCrossRefPubMed
44.
go back to reference Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR: High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011, 117: e207-e217. 10.1182/blood-2010-10-314427PubMedCentralCrossRefPubMed Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR: High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011, 117: e207-e217. 10.1182/blood-2010-10-314427PubMedCentralCrossRefPubMed
45.
go back to reference Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM: Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Canc Cell. 2004, 6: 33-43. 10.1016/j.ccr.2004.06.009.CrossRef Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM: Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Canc Cell. 2004, 6: 33-43. 10.1016/j.ccr.2004.06.009.CrossRef
46.
go back to reference Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, Fleischer M, Schwab F, Baier K, Einsele H, Flentje M, Vordermark D: Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Canc. 2007, 7: 213-10.1186/1471-2407-7-213. 10.1186/1471-2407-7-213CrossRef Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, Fleischer M, Schwab F, Baier K, Einsele H, Flentje M, Vordermark D: Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Canc. 2007, 7: 213-10.1186/1471-2407-7-213. 10.1186/1471-2407-7-213CrossRef
47.
go back to reference Elewaut D, DiDonato JA, Kim JM, Truong F, Eckmann L, Kagnoff MF: NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol. 1999, 163: 1457-1466.PubMed Elewaut D, DiDonato JA, Kim JM, Truong F, Eckmann L, Kagnoff MF: NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol. 1999, 163: 1457-1466.PubMed
48.
go back to reference Rosenstiel P, Fantini M, Bräutigam K, Kühbacher T, Waetzig GH, Seegert D, Schreiber S: TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003, 124: 1001-1009. 10.1053/gast.2003.50157CrossRefPubMed Rosenstiel P, Fantini M, Bräutigam K, Kühbacher T, Waetzig GH, Seegert D, Schreiber S: TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003, 124: 1001-1009. 10.1053/gast.2003.50157CrossRefPubMed
49.
go back to reference Vallabhapurapu S, Karin M: Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009, 27: 693-733. 10.1146/annurev.immunol.021908.132641CrossRefPubMed Vallabhapurapu S, Karin M: Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009, 27: 693-733. 10.1146/annurev.immunol.021908.132641CrossRefPubMed
50.
go back to reference Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ: Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol. 2009, 157: 436-450. 10.1111/j.1476-5381.2009.00143.xPubMedCentralCrossRefPubMed Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ: Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol. 2009, 157: 436-450. 10.1111/j.1476-5381.2009.00143.xPubMedCentralCrossRefPubMed
51.
go back to reference Straus DS, Pang KJ: Effects of bradykinin on DNA synthesis in resting NIL8 hamster cells and human fibroblasts. Exp Cell Res. 1984, 151: 87-95. 10.1016/0014-4827(84)90358-6CrossRefPubMed Straus DS, Pang KJ: Effects of bradykinin on DNA synthesis in resting NIL8 hamster cells and human fibroblasts. Exp Cell Res. 1984, 151: 87-95. 10.1016/0014-4827(84)90358-6CrossRefPubMed
52.
go back to reference Hylka VW, Teplow DB, Kent SB, Straus DS: Identification of a peptide fragment from the carboxyl-terminal extension region (E-domain) of rat proinsulin-like growth factor-II. J Biol Chem. 1985, 260: 14417-14420.PubMed Hylka VW, Teplow DB, Kent SB, Straus DS: Identification of a peptide fragment from the carboxyl-terminal extension region (E-domain) of rat proinsulin-like growth factor-II. J Biol Chem. 1985, 260: 14417-14420.PubMed
53.
go back to reference Straus DS, Coppock DL, Pang KJ: Low molecular weight mitogenic factor produced by BRL-3A cultured rat liver cells. Biochem Biophys Res Commun. 1981, 100: 1619-1625. 10.1016/0006-291X(81)90704-XCrossRefPubMed Straus DS, Coppock DL, Pang KJ: Low molecular weight mitogenic factor produced by BRL-3A cultured rat liver cells. Biochem Biophys Res Commun. 1981, 100: 1619-1625. 10.1016/0006-291X(81)90704-XCrossRefPubMed
54.
go back to reference Straus DS: Growth-stimulatory actions of insulin in vitro and in vivo. Endocr Rev. 1984, 5: 356-369. 10.1210/edrv-5-2-356CrossRefPubMed Straus DS: Growth-stimulatory actions of insulin in vitro and in vivo. Endocr Rev. 1984, 5: 356-369. 10.1210/edrv-5-2-356CrossRefPubMed
55.
go back to reference Kim JW, Gao P, Liu YC, Semenza GL, Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007, 27: 7381-7393. 10.1128/MCB.00440-07PubMedCentralCrossRefPubMed Kim JW, Gao P, Liu YC, Semenza GL, Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007, 27: 7381-7393. 10.1128/MCB.00440-07PubMedCentralCrossRefPubMed
56.
go back to reference Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM: Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem. 2006, 281: 15215-15226. 10.1074/jbc.M511408200CrossRefPubMed Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM: Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem. 2006, 281: 15215-15226. 10.1074/jbc.M511408200CrossRefPubMed
57.
go back to reference Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996, 271: 32529-32537. 10.1074/jbc.271.51.32529CrossRefPubMed Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996, 271: 32529-32537. 10.1074/jbc.271.51.32529CrossRefPubMed
58.
go back to reference Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12: 149-162. 10.1101/gad.12.2.149PubMedCentralCrossRefPubMed Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12: 149-162. 10.1101/gad.12.2.149PubMedCentralCrossRefPubMed
59.
go back to reference Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ: Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 2010, 30: 344-353. 10.1128/MCB.00444-09PubMedCentralCrossRefPubMed Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ: Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 2010, 30: 344-353. 10.1128/MCB.00444-09PubMedCentralCrossRefPubMed
60.
go back to reference Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ: Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009, 284: 16767-16775. 10.1074/jbc.M901790200PubMedCentralCrossRefPubMed Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ: Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009, 284: 16767-16775. 10.1074/jbc.M901790200PubMedCentralCrossRefPubMed
61.
go back to reference Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y: Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012, 32: 3018-3032. 10.1128/MCB.06643-11PubMedCentralCrossRefPubMed Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y: Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012, 32: 3018-3032. 10.1128/MCB.06643-11PubMedCentralCrossRefPubMed
62.
go back to reference Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT, Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E, Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G, Byron R, MacCoss MJ, Akey JM, Bender MA, Groudine M, Kaul R, Stamatoyannopoulos JA: An expansive human regulatory lexicon encoded in transcription factor footprints. Nature. 2012, 489: 83-90. 10.1038/nature11212PubMedCentralCrossRefPubMed Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT, Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E, Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G, Byron R, MacCoss MJ, Akey JM, Bender MA, Groudine M, Kaul R, Stamatoyannopoulos JA: An expansive human regulatory lexicon encoded in transcription factor footprints. Nature. 2012, 489: 83-90. 10.1038/nature11212PubMedCentralCrossRefPubMed
63.
64.
go back to reference Lundholm ML, Mohme-Lundholm E, Vamos N: Lactic acid assay with L(plus)lactic acid dehydrogenase from rabbit muscle. Acta Physiol Scand. 1963, 58: 243-249. 10.1111/j.1748-1716.1963.tb02645.xCrossRefPubMed Lundholm ML, Mohme-Lundholm E, Vamos N: Lactic acid assay with L(plus)lactic acid dehydrogenase from rabbit muscle. Acta Physiol Scand. 1963, 58: 243-249. 10.1111/j.1748-1716.1963.tb02645.xCrossRefPubMed
65.
go back to reference Campo PA, Das S, Hsiang CH, Bui T, Samuel CE, Straus DS: Translational regulation of cyclin D1 by 15-deoxy-delta(12, 14)-prostaglandin J(2). Cell Growth Differ. 2002, 13: 409-420.PubMed Campo PA, Das S, Hsiang CH, Bui T, Samuel CE, Straus DS: Translational regulation of cyclin D1 by 15-deoxy-delta(12, 14)-prostaglandin J(2). Cell Growth Differ. 2002, 13: 409-420.PubMed
66.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275.PubMed
67.
go back to reference Baldwin SA, Lienhard GE: Purification and reconstitution of glucose transporter from human erythrocytes. Methods Enzymol. 1989, 174: 39-50.CrossRefPubMed Baldwin SA, Lienhard GE: Purification and reconstitution of glucose transporter from human erythrocytes. Methods Enzymol. 1989, 174: 39-50.CrossRefPubMed
Metadata
Title
TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells
Author
Daniel S Straus
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-78

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine