Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

RETRACTED ARTICLE: Effects of HDM2 antagonism on sunitinib resistance, p53 activation, SDF-1 induction, and tumor infiltration by CD11b+/Gr-1+ myeloid derived suppressor cells

Authors: David J Panka, Qingjun Liu, Andrew K Geissler, James W Mier

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

The studies reported herein were undertaken to determine if the angiostatic function of p53 could be exploited as an adjunct to VEGF-targeted therapy in the treatment of renal cell carcinoma (RCC).

Methods

Nude/beige mice bearing human RCC xenografts were treated with various combinations of sunitinib and the HDM2 antagonist MI-319. Tumors were excised at various time points before and during treatment and analyzed by western blot and IHC for evidence of p53 activation and function.

Results

Sunitinib treatment increased p53 levels in RCC xenografts and transiently induced the expression of p21waf1, Noxa, and HDM2, the levels of which subsequently declined to baseline (or undetectable) with the emergence of sunitinib resistance. The development of resistance and the suppression of p53-dependent gene expression temporally correlated with the induction of the p53 antagonist HDMX. The concurrent administration of MI-319 markedly increased the antitumor and anti-angiogenic activities of sunitinib and led to sustained p53-dependent gene expression. It also suppressed the expression of the chemokine SDF-1 (CXCL12) and the influx of CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSC) otherwise induced by sunitinib. Although p53 knockdown markedly reduced the production of the angiostatic peptide endostatin, the production of endostatin was not augmented by MI-319 treatment.

Conclusions

The evasion of p53 function (possibly through the expression of HDMX) is an essential element in the development of resistance to VEGF-targeted therapy in RCC. The maintenance of p53 function through the concurrent administration of an HDM2 antagonist is an effective means of delaying or preventing the development of resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS: Effect of p53 status on tumor response to antiangiogenic therapy. Science. 2002, 295: 1526-1528. 10.1126/science.1068327CrossRefPubMed Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS: Effect of p53 status on tumor response to antiangiogenic therapy. Science. 2002, 295: 1526-1528. 10.1126/science.1068327CrossRefPubMed
2.
go back to reference Teodoro JG, Evans SK, Green MR: Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med. 2007, 85: 1175-1186. 10.1007/s00109-007-0221-2CrossRefPubMed Teodoro JG, Evans SK, Green MR: Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med. 2007, 85: 1175-1186. 10.1007/s00109-007-0221-2CrossRefPubMed
3.
go back to reference Rini BI, Atkins MB: Resistance to targeted therapy in renal cell carcinoma. Lancet Oncol. 2009, 10: 992-1000. 10.1016/S1470-2045(09)70240-2CrossRefPubMed Rini BI, Atkins MB: Resistance to targeted therapy in renal cell carcinoma. Lancet Oncol. 2009, 10: 992-1000. 10.1016/S1470-2045(09)70240-2CrossRefPubMed
4.
go back to reference Bergers G, Hanahan D: Modes of resistance to anti-angiogenic therapy. Nature Rev Cancer. 2008, 8: 592-603. 10.1038/nrc2442.CrossRef Bergers G, Hanahan D: Modes of resistance to anti-angiogenic therapy. Nature Rev Cancer. 2008, 8: 592-603. 10.1038/nrc2442.CrossRef
5.
go back to reference Ebos JM, Lee CR, Kerbel RS: Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res. 2009, 15: 5020-5025. 10.1158/1078-0432.CCR-09-0095CrossRefPubMedPubMedCentral Ebos JM, Lee CR, Kerbel RS: Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res. 2009, 15: 5020-5025. 10.1158/1078-0432.CCR-09-0095CrossRefPubMedPubMedCentral
6.
go back to reference Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM: Inhibition of vasculogenesis, but not angiogenesis, prevents recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010, 120: 694-705. 10.1172/JCI40283CrossRefPubMedPubMedCentral Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM: Inhibition of vasculogenesis, but not angiogenesis, prevents recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010, 120: 694-705. 10.1172/JCI40283CrossRefPubMedPubMedCentral
7.
go back to reference Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL: Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008, 13: 23-35. 10.1016/j.ccr.2007.12.004CrossRefPubMedPubMedCentral Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL: Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008, 13: 23-35. 10.1016/j.ccr.2007.12.004CrossRefPubMedPubMedCentral
8.
go back to reference Chan DA, Kawahara TLA, Sutphin PD, Chang HY, Chi JT, Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009, 15: 527-538. 10.1016/j.ccr.2009.04.010CrossRefPubMedPubMedCentral Chan DA, Kawahara TLA, Sutphin PD, Chang HY, Chi JT, Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009, 15: 527-538. 10.1016/j.ccr.2009.04.010CrossRefPubMedPubMedCentral
9.
go back to reference Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotech. 2007, 25: 911-920. 10.1038/nbt1323. 10.1038/nbt1323CrossRef Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotech. 2007, 25: 911-920. 10.1038/nbt1323. 10.1038/nbt1323CrossRef
10.
go back to reference Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004, 6: 409-421. 10.1016/j.ccr.2004.08.031CrossRefPubMed Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004, 6: 409-421. 10.1016/j.ccr.2004.08.031CrossRefPubMed
11.
go back to reference Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450: 825-831. 10.1038/nature06348CrossRefPubMed Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450: 825-831. 10.1038/nature06348CrossRefPubMed
12.
go back to reference Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005, 65: 3044-3048.CrossRef Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005, 65: 3044-3048.CrossRef
13.
go back to reference Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007, 13: 828-835. 10.1038/nm1609CrossRefPubMedPubMedCentral Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007, 13: 828-835. 10.1038/nm1609CrossRefPubMedPubMedCentral
14.
go back to reference Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M: p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res. 2006, 66: 10671-10676. 10.1158/0008-5472.CAN-06-2323CrossRefPubMed Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M: p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res. 2006, 66: 10671-10676. 10.1158/0008-5472.CAN-06-2323CrossRefPubMed
15.
go back to reference Addadi Y, Moskovits N, Granot D, Lozano G, Carmi Y, Apte RN, Neeman M, Oren M: p53 status in stromal fibroblasts modulates tumor growth in an SDF-1-dependnet manner. Cancer Res. 2010, 70: 9650-9658. 10.1158/0008-5472.CAN-10-1146CrossRefPubMedPubMedCentral Addadi Y, Moskovits N, Granot D, Lozano G, Carmi Y, Apte RN, Neeman M, Oren M: p53 status in stromal fibroblasts modulates tumor growth in an SDF-1-dependnet manner. Cancer Res. 2010, 70: 9650-9658. 10.1158/0008-5472.CAN-10-1146CrossRefPubMedPubMedCentral
17.
go back to reference Folkman J: Tumor suppression by p53 is mediated in part by the antiangiogenic activity of endostatin and tumstatin. Sci STKE. 2006, 354: pe35- Folkman J: Tumor suppression by p53 is mediated in part by the antiangiogenic activity of endostatin and tumstatin. Sci STKE. 2006, 354: pe35-
18.
go back to reference Teodoro JG, Parker AE, Zhu X, Green MR: p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 2006, 313: 968-971. 10.1126/science.1126391CrossRefPubMed Teodoro JG, Parker AE, Zhu X, Green MR: p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 2006, 313: 968-971. 10.1126/science.1126391CrossRefPubMed
19.
go back to reference Assadian S, El-Assaad W, Wang XQD, Gannon PO, Barrès V, Latour M, Mes-Masson AM, Saad F, Sado Y, Dostie J, Teodoro JG: p53 inhibits angiogenesis by inducing the production of arresten. Cancer Res. 2012, 72: 1270-1279. 10.1158/0008-5472.CAN-11-2348CrossRefPubMed Assadian S, El-Assaad W, Wang XQD, Gannon PO, Barrès V, Latour M, Mes-Masson AM, Saad F, Sado Y, Dostie J, Teodoro JG: p53 inhibits angiogenesis by inducing the production of arresten. Cancer Res. 2012, 72: 1270-1279. 10.1158/0008-5472.CAN-11-2348CrossRefPubMed
20.
go back to reference Meek DW: Tumour suppression by p53: a role for the DNA damage response?. Nat Rev Cancer. 2009, 9: 714-723.CrossRef Meek DW: Tumour suppression by p53: a role for the DNA damage response?. Nat Rev Cancer. 2009, 9: 714-723.CrossRef
21.
go back to reference Vousden KH, Prives C: Blinded by the light: the growing complexity of p53. Cell. 2009, 137: 413-431. 10.1016/j.cell.2009.04.037CrossRefPubMed Vousden KH, Prives C: Blinded by the light: the growing complexity of p53. Cell. 2009, 137: 413-431. 10.1016/j.cell.2009.04.037CrossRefPubMed
22.
go back to reference Ditch S, Paull TT: The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci. 2012, 37: 15-22. 10.1016/j.tibs.2011.10.002CrossRefPubMed Ditch S, Paull TT: The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci. 2012, 37: 15-22. 10.1016/j.tibs.2011.10.002CrossRefPubMed
23.
go back to reference Szymanska K, Moore LE, Rothman N, Chow WH, Chow WH, Waldman F, Jaeger E, Waterboer T, Foretova L, Navratilova M, Janout V, Kollarova H, Zaridze D, Matveev V, Mates D, Szeszenia-Dabrowska N, Holcatova I, Bencko V, Le Calvez-Kelm F, Villar S, Pawlita M, Boffetta P, Hainaut P, Brennan P: TP53, EGFR, and KRAS mutation in relation of VHL inactivation and lifestyle risk factors in renal cell carcinoma from central and eastern Europe. Cancer Lett. 2010, 2293: 92-98.CrossRef Szymanska K, Moore LE, Rothman N, Chow WH, Chow WH, Waldman F, Jaeger E, Waterboer T, Foretova L, Navratilova M, Janout V, Kollarova H, Zaridze D, Matveev V, Mates D, Szeszenia-Dabrowska N, Holcatova I, Bencko V, Le Calvez-Kelm F, Villar S, Pawlita M, Boffetta P, Hainaut P, Brennan P: TP53, EGFR, and KRAS mutation in relation of VHL inactivation and lifestyle risk factors in renal cell carcinoma from central and eastern Europe. Cancer Lett. 2010, 2293: 92-98.CrossRef
24.
go back to reference Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gutkov AV: p53 pathway in renal cell carcinoma is repressed by dominant mechanism. Cancer Res. 2004, 64: 1951-1958. 10.1158/0008-5472.CAN-03-1541CrossRefPubMed Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gutkov AV: p53 pathway in renal cell carcinoma is repressed by dominant mechanism. Cancer Res. 2004, 64: 1951-1958. 10.1158/0008-5472.CAN-03-1541CrossRefPubMed
25.
go back to reference Gurova KV, Hill JE, Guo C, Prokvolit A, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA. 2005, 102: 17448-17453. 10.1073/pnas.0508888102CrossRefPubMed Gurova KV, Hill JE, Guo C, Prokvolit A, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA. 2005, 102: 17448-17453. 10.1073/pnas.0508888102CrossRefPubMed
26.
go back to reference An J, Rettig MB: Mechanism of von Hippel-Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol Cell Biol. 2005, 25: 7546-7556. 10.1128/MCB.25.17.7546-7556.2005CrossRefPubMedPubMedCentral An J, Rettig MB: Mechanism of von Hippel-Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol Cell Biol. 2005, 25: 7546-7556. 10.1128/MCB.25.17.7546-7556.2005CrossRefPubMedPubMedCentral
27.
go back to reference Jeon B-N, Kim M-K, Choi W-I, Koh D-I Hong SY, Kim KS, Kim M, Yun CO, Yoon J, Choi KY, Lee KR, Nephew KP, Hur MW: KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A. Cancer Res. 2012, 72: 1137-1148. 10.1158/0008-5472.CAN-11-2433CrossRefPubMed Jeon B-N, Kim M-K, Choi W-I, Koh D-I Hong SY, Kim KS, Kim M, Yun CO, Yoon J, Choi KY, Lee KR, Nephew KP, Hur MW: KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A. Cancer Res. 2012, 72: 1137-1148. 10.1158/0008-5472.CAN-11-2433CrossRefPubMed
28.
go back to reference Hammond EM, Mandell DJ, Salim A, Krieg AJ, Johnson TM, Shirazi HA, Attardi LD, Giaccia AJ: Genome-wide analysis of p53 under hypoxic conditions. Mol Cell Biol. 2006, 26: 3492-3504. 10.1128/MCB.26.9.3492-3504.2006CrossRefPubMedPubMedCentral Hammond EM, Mandell DJ, Salim A, Krieg AJ, Johnson TM, Shirazi HA, Attardi LD, Giaccia AJ: Genome-wide analysis of p53 under hypoxic conditions. Mol Cell Biol. 2006, 26: 3492-3504. 10.1128/MCB.26.9.3492-3504.2006CrossRefPubMedPubMedCentral
29.
go back to reference Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M, Giaccia A: Regulation of p53 by hypoxia: Dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 2001, 21: 1297-1310. 10.1128/MCB.21.4.1297-1310.2001CrossRefPubMedPubMedCentral Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M, Giaccia A: Regulation of p53 by hypoxia: Dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 2001, 21: 1297-1310. 10.1128/MCB.21.4.1297-1310.2001CrossRefPubMedPubMedCentral
30.
go back to reference Hammond EM, Giaccia AJ: The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Comm. 2005, 331: 718-725. 10.1016/j.bbrc.2005.03.154CrossRefPubMed Hammond EM, Giaccia AJ: The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Comm. 2005, 331: 718-725. 10.1016/j.bbrc.2005.03.154CrossRefPubMed
31.
go back to reference Hammond EM, Giaccia AJ: Hypoxia-inducible factor-1 and p53: Friends, acquaintances, or strangers. Clin Cancer Res. 2006, 12: 5007-5009. 10.1158/1078-0432.CCR-06-0613CrossRefPubMed Hammond EM, Giaccia AJ: Hypoxia-inducible factor-1 and p53: Friends, acquaintances, or strangers. Clin Cancer Res. 2006, 12: 5007-5009. 10.1158/1078-0432.CCR-06-0613CrossRefPubMed
32.
go back to reference Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH: Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 2009, 28: 2719-2732. 10.1038/emboj.2009.214CrossRefPubMedPubMedCentral Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH: Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 2009, 28: 2719-2732. 10.1038/emboj.2009.214CrossRefPubMedPubMedCentral
33.
go back to reference Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LGGC, Masucci M, Pramanik A, Selivanova G: Small molecule RITA binds to p53, blocks p53-HDM2 interaction and activates p53 function in tumors. Nat Med. 2004, 10: 1321-1328. 10.1038/nm1146CrossRefPubMed Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LGGC, Masucci M, Pramanik A, Selivanova G: Small molecule RITA binds to p53, blocks p53-HDM2 interaction and activates p53 function in tumors. Nat Med. 2004, 10: 1321-1328. 10.1038/nm1146CrossRefPubMed
34.
go back to reference Shangary S, Qin D, McEachern D, Liu M, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008, 105: 3933-3938. 10.1073/pnas.0708917105CrossRefPubMed Shangary S, Qin D, McEachern D, Liu M, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008, 105: 3933-3938. 10.1073/pnas.0708917105CrossRefPubMed
35.
go back to reference Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303: 844-848. 10.1126/science.1092472CrossRefPubMed Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303: 844-848. 10.1126/science.1092472CrossRefPubMed
36.
go back to reference Schor-Bardach R, Alsop DC, Pedrosa I, Solazzo SA, Wang X, Marquis RP, Atkins MB, Regan M, Signoretti S, Lenkinski RE, Goldberg SN: Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model?. Radiology. 2009, 51: 731-742.CrossRef Schor-Bardach R, Alsop DC, Pedrosa I, Solazzo SA, Wang X, Marquis RP, Atkins MB, Regan M, Signoretti S, Lenkinski RE, Goldberg SN: Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model?. Radiology. 2009, 51: 731-742.CrossRef
37.
go back to reference Gilkes DM, Pan Y, Coppola D, Yeatman T, Reuther GW, Chen J: Regulation of MDMX expression by mitogenic signaling. Mol Cell Biol. 2008, 28: 1999-2010. 10.1128/MCB.01633-07CrossRefPubMedPubMedCentral Gilkes DM, Pan Y, Coppola D, Yeatman T, Reuther GW, Chen J: Regulation of MDMX expression by mitogenic signaling. Mol Cell Biol. 2008, 28: 1999-2010. 10.1128/MCB.01633-07CrossRefPubMedPubMedCentral
38.
go back to reference Chang Q, Jurisica I, Do T, Hedley DW: Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically-grown primary xenografts of human pancreatic cancer. Cancer Res. 2011, 71: 3110-3120. 10.1158/0008-5472.CAN-10-4049CrossRefPubMed Chang Q, Jurisica I, Do T, Hedley DW: Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically-grown primary xenografts of human pancreatic cancer. Cancer Res. 2011, 71: 3110-3120. 10.1158/0008-5472.CAN-10-4049CrossRefPubMed
39.
go back to reference Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009, 15: 2148-2157. 10.1158/1078-0432.CCR-08-1332CrossRefPubMed Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009, 15: 2148-2157. 10.1158/1078-0432.CCR-08-1332CrossRefPubMed
40.
go back to reference Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA: Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010, 70: 3526-3536. 10.1158/0008-5472.CAN-09-3278CrossRefPubMedPubMedCentral Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA: Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010, 70: 3526-3536. 10.1158/0008-5472.CAN-09-3278CrossRefPubMedPubMedCentral
41.
go back to reference Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH: The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based therapies. Cancer Res. 2009, 69: 2514-2522. 10.1158/0008-5472.CAN-08-4709CrossRefPubMedPubMedCentral Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH: The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based therapies. Cancer Res. 2009, 69: 2514-2522. 10.1158/0008-5472.CAN-08-4709CrossRefPubMedPubMedCentral
42.
go back to reference Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H: Sunitinib inhibition of STAT3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009, 69: 2506-2513. 10.1158/0008-5472.CAN-08-4323CrossRefPubMedPubMedCentral Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H: Sunitinib inhibition of STAT3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009, 69: 2506-2513. 10.1158/0008-5472.CAN-08-4323CrossRefPubMedPubMedCentral
43.
go back to reference Farsaci B, Higgins JP, Hodge JW: Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. Int J Cancer. 2012, 130: 1948-1959. 10.1002/ijc.26219CrossRefPubMed Farsaci B, Higgins JP, Hodge JW: Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. Int J Cancer. 2012, 130: 1948-1959. 10.1002/ijc.26219CrossRefPubMed
44.
go back to reference Henze J, Muhlenberg T, Simon S, Grabellus F, Rubin B, Taeger G, Schuler M, Treckmann J, Debiec-Rychter M, Taguchi T, Fletcher JA, Bauer S: p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors. PLoS One. 2012, 7: e37776- 10.1371/journal.pone.0037776CrossRefPubMedPubMedCentral Henze J, Muhlenberg T, Simon S, Grabellus F, Rubin B, Taeger G, Schuler M, Treckmann J, Debiec-Rychter M, Taguchi T, Fletcher JA, Bauer S: p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors. PLoS One. 2012, 7: e37776- 10.1371/journal.pone.0037776CrossRefPubMedPubMedCentral
45.
go back to reference Sabir A, Schor-Bardach R, Wilcox CJ, Rahmanuddin S, Atkins MB, Kruskal JB, Signoretti S, Raptopoulos VD, Goldberg SN: Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy. Am J Roentgenol. 2008, 191: 133-139. 10.2214/AJR.07.2848.CrossRef Sabir A, Schor-Bardach R, Wilcox CJ, Rahmanuddin S, Atkins MB, Kruskal JB, Signoretti S, Raptopoulos VD, Goldberg SN: Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy. Am J Roentgenol. 2008, 191: 133-139. 10.2214/AJR.07.2848.CrossRef
46.
go back to reference Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer. 2009, 8: 115-128. 10.1186/1476-4598-8-115CrossRefPubMedPubMedCentral Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer. 2009, 8: 115-128. 10.1186/1476-4598-8-115CrossRefPubMedPubMedCentral
47.
go back to reference Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM: MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer. 2010, 46: 1122-1131. 10.1016/j.ejca.2010.01.015CrossRefPubMedPubMedCentral Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM: MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer. 2010, 46: 1122-1131. 10.1016/j.ejca.2010.01.015CrossRefPubMedPubMedCentral
48.
go back to reference Takeshita M, Tani T, Harada S, Hayashi H, Itoh H, Tajima H, Ohnishi I, Takamura H, Fushida S, Kayahara M: Role of transcription factors in small intestinal ischemia-reperfusion injury and tolerance induced by ischemic preconditioning. Transplant Proc. 2010, 42: 3406-3413. 10.1016/j.transproceed.2010.06.038CrossRefPubMed Takeshita M, Tani T, Harada S, Hayashi H, Itoh H, Tajima H, Ohnishi I, Takamura H, Fushida S, Kayahara M: Role of transcription factors in small intestinal ischemia-reperfusion injury and tolerance induced by ischemic preconditioning. Transplant Proc. 2010, 42: 3406-3413. 10.1016/j.transproceed.2010.06.038CrossRefPubMed
Metadata
Title
RETRACTED ARTICLE: Effects of HDM2 antagonism on sunitinib resistance, p53 activation, SDF-1 induction, and tumor infiltration by CD11b+/Gr-1+ myeloid derived suppressor cells
Authors
David J Panka
Qingjun Liu
Andrew K Geissler
James W Mier
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-17

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine