Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Review

The roles of FOXM1 in pancreatic stem cells and carcinogenesis

Authors: Ming Quan, Peipei Wang, Jiujie Cui, Yong Gao, Keping Xie

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107PubMedCrossRef
2.
3.
go back to reference Li D, Xie K, Wolff R, Abbruzzese JL: Pancreatic cancer. Lancet. 2004, 363 (9414): 1049-1057. 10.1016/S0140-6736(04)15841-8PubMedCrossRef Li D, Xie K, Wolff R, Abbruzzese JL: Pancreatic cancer. Lancet. 2004, 363 (9414): 1049-1057. 10.1016/S0140-6736(04)15841-8PubMedCrossRef
4.
go back to reference Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011, 61 (4): 212-236. 10.3322/caac.20121PubMedCrossRef Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011, 61 (4): 212-236. 10.3322/caac.20121PubMedCrossRef
5.
go back to reference Li Y, Kong D, Ahmad A, Bao B, Sarkar FH: Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett. 2013, 338 (1): 94-100. 10.1016/j.canlet.2012.03.018PubMedCentralPubMedCrossRef Li Y, Kong D, Ahmad A, Bao B, Sarkar FH: Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett. 2013, 338 (1): 94-100. 10.1016/j.canlet.2012.03.018PubMedCentralPubMedCrossRef
6.
7.
go back to reference Schieber MS, Chandel NS: ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell. 2013, 23 (3): 265-267. 10.1016/j.ccr.2013.02.021PubMedCrossRef Schieber MS, Chandel NS: ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell. 2013, 23 (3): 265-267. 10.1016/j.ccr.2013.02.021PubMedCrossRef
8.
go back to reference Pasquier J, Rafii A: Role of the microenvironment in ovarian cancer stem cell maintenance. Biomed Res Int. 2013, 2013: 630782-PubMedCentralPubMed Pasquier J, Rafii A: Role of the microenvironment in ovarian cancer stem cell maintenance. Biomed Res Int. 2013, 2013: 630782-PubMedCentralPubMed
10.
go back to reference Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, Tozzi F, Sceusi E, Zhou Y, Tachibana I: Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013, 23 (2): 171-185. 10.1016/j.ccr.2012.12.021PubMedCentralPubMedCrossRef Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, Tozzi F, Sceusi E, Zhou Y, Tachibana I: Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013, 23 (2): 171-185. 10.1016/j.ccr.2012.12.021PubMedCentralPubMedCrossRef
11.
go back to reference Dong HH, Xiang S, Liang HF, Li CH, Zhang ZW, Chen XP: The niche of hepatic cancer stem cell and cancer recurrence. Med Hypotheses. 2013, 80 (5): 666-668. 10.1016/j.mehy.2013.01.021PubMedCrossRef Dong HH, Xiang S, Liang HF, Li CH, Zhang ZW, Chen XP: The niche of hepatic cancer stem cell and cancer recurrence. Med Hypotheses. 2013, 80 (5): 666-668. 10.1016/j.mehy.2013.01.021PubMedCrossRef
12.
go back to reference Borovski T, De Sousa EMF, Vermeulen L, Medema JP: Cancer stem cell niche: the place to be. Cancer Res. 2011, 71 (3): 634-639. 10.1158/0008-5472.CAN-10-3220PubMedCrossRef Borovski T, De Sousa EMF, Vermeulen L, Medema JP: Cancer stem cell niche: the place to be. Cancer Res. 2011, 71 (3): 634-639. 10.1158/0008-5472.CAN-10-3220PubMedCrossRef
13.
go back to reference Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67 (3): 1030-1037. 10.1158/0008-5472.CAN-06-2030PubMedCrossRef Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67 (3): 1030-1037. 10.1158/0008-5472.CAN-06-2030PubMedCrossRef
14.
go back to reference Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007, 1 (3): 313-323. 10.1016/j.stem.2007.06.002PubMedCrossRef Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007, 1 (3): 313-323. 10.1016/j.stem.2007.06.002PubMedCrossRef
15.
go back to reference Wang Z, Park HJ, Carr JR, Chen YJ, Zheng Y, Li J, Tyner AL, Costa RH, Bagchi S, Raychaudhuri P: FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res. 2011, 71 (12): 4292-4302. 10.1158/0008-5472.CAN-10-4087PubMedCentralPubMedCrossRef Wang Z, Park HJ, Carr JR, Chen YJ, Zheng Y, Li J, Tyner AL, Costa RH, Bagchi S, Raychaudhuri P: FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res. 2011, 71 (12): 4292-4302. 10.1158/0008-5472.CAN-10-4087PubMedCentralPubMedCrossRef
16.
go back to reference Korver W, Roose J, Heinen K, Weghuis DO, de Bruijn D, van Kessel AG, Clevers H: The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics. 1997, 46 (3): 435-442. 10.1006/geno.1997.5065PubMedCrossRef Korver W, Roose J, Heinen K, Weghuis DO, de Bruijn D, van Kessel AG, Clevers H: The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics. 1997, 46 (3): 435-442. 10.1006/geno.1997.5065PubMedCrossRef
17.
go back to reference Kalin TV, Ustiyan V, Kalinichenko VV: Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle. 2011, 10 (3): 396-405. 10.4161/cc.10.3.14709PubMedCentralPubMedCrossRef Kalin TV, Ustiyan V, Kalinichenko VV: Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle. 2011, 10 (3): 396-405. 10.4161/cc.10.3.14709PubMedCentralPubMedCrossRef
18.
go back to reference Bowman A, Nusse R: Location, location, location: FoxM1 mediates beta-catenin nuclear translocation and promotes glioma tumorigenesis. Cancer Cell. 2011, 20 (4): 415-416. 10.1016/j.ccr.2011.10.003PubMedCrossRef Bowman A, Nusse R: Location, location, location: FoxM1 mediates beta-catenin nuclear translocation and promotes glioma tumorigenesis. Cancer Cell. 2011, 20 (4): 415-416. 10.1016/j.ccr.2011.10.003PubMedCrossRef
19.
go back to reference Balli D, Zhang Y, Snyder J, Kalinichenko VV, Kalin TV: Endothelial cell-specific deletion of transcription factor FoxM1 increases urethane-induced lung carcinogenesis. Cancer Res. 2011, 71 (1): 40-50. 10.1158/0008-5472.CAN-10-2004PubMedCentralPubMedCrossRef Balli D, Zhang Y, Snyder J, Kalinichenko VV, Kalin TV: Endothelial cell-specific deletion of transcription factor FoxM1 increases urethane-induced lung carcinogenesis. Cancer Res. 2011, 71 (1): 40-50. 10.1158/0008-5472.CAN-10-2004PubMedCentralPubMedCrossRef
20.
go back to reference Yang C, Chen H, Yu L, Shan L, Xie L, Hu J, Chen T, Tan Y: Inhibition of FOXM1 transcription factor suppresses cell proliferation and tumor growth of breast cancer. Cancer Gene Ther. 2013, 20 (2): 117-124. 10.1038/cgt.2012.94PubMedCrossRef Yang C, Chen H, Yu L, Shan L, Xie L, Hu J, Chen T, Tan Y: Inhibition of FOXM1 transcription factor suppresses cell proliferation and tumor growth of breast cancer. Cancer Gene Ther. 2013, 20 (2): 117-124. 10.1038/cgt.2012.94PubMedCrossRef
21.
go back to reference Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H, Fan D, Nie Y, Wu K: Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol. 2012, 57 (3): 600-612. 10.1016/j.jhep.2012.04.020PubMedCrossRef Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H, Fan D, Nie Y, Wu K: Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol. 2012, 57 (3): 600-612. 10.1016/j.jhep.2012.04.020PubMedCrossRef
22.
go back to reference Xia JT, Wang H, Liang LJ, Peng BG, Wu ZF, Chen LZ, Xue L, Li Z, Li W: Overexpression of FOXM1 is associated with poor prognosis and clinicopathologic stage of pancreatic ductal adenocarcinoma. Pancreas. 2012, 41 (4): 629-635. 10.1097/MPA.0b013e31823bcef2PubMedCrossRef Xia JT, Wang H, Liang LJ, Peng BG, Wu ZF, Chen LZ, Xue L, Li Z, Li W: Overexpression of FOXM1 is associated with poor prognosis and clinicopathologic stage of pancreatic ductal adenocarcinoma. Pancreas. 2012, 41 (4): 629-635. 10.1097/MPA.0b013e31823bcef2PubMedCrossRef
23.
go back to reference Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, Le X, Wei D, Huang S, Xie K: A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res. 2012, 72 (3): 655-665. 10.1158/0008-5472.CAN-11-3102PubMedCentralPubMedCrossRef Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, Le X, Wei D, Huang S, Xie K: A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res. 2012, 72 (3): 655-665. 10.1158/0008-5472.CAN-11-3102PubMedCentralPubMedCrossRef
24.
go back to reference Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y: FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011, 20 (4): 427-442. 10.1016/j.ccr.2011.08.016PubMedCentralPubMedCrossRef Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y: FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011, 20 (4): 427-442. 10.1016/j.ccr.2011.08.016PubMedCentralPubMedCrossRef
25.
go back to reference Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH: Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem. 2011, 112 (9): 2296-2306. 10.1002/jcb.23150PubMedCentralPubMedCrossRef Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH: Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem. 2011, 112 (9): 2296-2306. 10.1002/jcb.23150PubMedCentralPubMedCrossRef
26.
27.
go back to reference Cooper CL, O’Toole SA, Kench JG: Classification, morphology and molecular pathology of premalignant lesions of the pancreas. Pathology. 2013, 45 (3): 286-304. 10.1097/PAT.0b013e32835f2205PubMedCrossRef Cooper CL, O’Toole SA, Kench JG: Classification, morphology and molecular pathology of premalignant lesions of the pancreas. Pathology. 2013, 45 (3): 286-304. 10.1097/PAT.0b013e32835f2205PubMedCrossRef
28.
go back to reference Hidalgo M: New insights into pancreatic cancer biology. Ann Oncol. 2012, 23 (Suppl 10): 135-138. 10.1093/annonc/mds313CrossRef Hidalgo M: New insights into pancreatic cancer biology. Ann Oncol. 2012, 23 (Suppl 10): 135-138. 10.1093/annonc/mds313CrossRef
29.
go back to reference Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008, 321 (5897): 1801-1806. 10.1126/science.1164368PubMedCentralPubMedCrossRef Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008, 321 (5897): 1801-1806. 10.1126/science.1164368PubMedCentralPubMedCrossRef
30.
go back to reference Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B: Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012, 142 (4): 730-733. e739, 10.1053/j.gastro.2011.12.042PubMedCentralPubMedCrossRef Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B: Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012, 142 (4): 730-733. e739, 10.1053/j.gastro.2011.12.042PubMedCentralPubMedCrossRef
31.
go back to reference Welsch T, Kleeff J, Friess H: Molecular pathogenesis of pancreatic cancer: advances and challenges. Curr Mol Med. 2007, 7 (5): 504-521. 10.2174/156652407781387082PubMedCrossRef Welsch T, Kleeff J, Friess H: Molecular pathogenesis of pancreatic cancer: advances and challenges. Curr Mol Med. 2007, 7 (5): 504-521. 10.2174/156652407781387082PubMedCrossRef
32.
go back to reference Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Kloppel G: Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology. 1992, 102 (1): 230-236.PubMed Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Kloppel G: Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology. 1992, 102 (1): 230-236.PubMed
33.
go back to reference Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL, Bos JL: K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993, 143 (2): 545-554.PubMedCentralPubMed Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL, Bos JL: K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993, 143 (2): 545-554.PubMedCentralPubMed
34.
go back to reference Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007, 7 (4): 295-308. 10.1038/nrc2109PubMedCrossRef Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007, 7 (4): 295-308. 10.1038/nrc2109PubMedCrossRef
35.
go back to reference Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012, 491 (7424): 399-405. 10.1038/nature11547PubMedCentralPubMedCrossRef Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012, 491 (7424): 399-405. 10.1038/nature11547PubMedCentralPubMedCrossRef
36.
go back to reference Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003, 4 (6): 437-450. 10.1016/S1535-6108(03)00309-XPubMedCrossRef Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003, 4 (6): 437-450. 10.1016/S1535-6108(03)00309-XPubMedCrossRef
37.
go back to reference Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, Mercer KL, Grochow R, Hock H, Crowley D: Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004, 5 (4): 375-387. 10.1016/S1535-6108(04)00085-6PubMedCrossRef Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, Mercer KL, Grochow R, Hock H, Crowley D: Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004, 5 (4): 375-387. 10.1016/S1535-6108(04)00085-6PubMedCrossRef
38.
go back to reference Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, Hempen PM, Hilgers W, Yeo CJ, Hruban RH: BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 2003, 163 (4): 1255-1260. 10.1016/S0002-9440(10)63485-2PubMedCentralPubMedCrossRef Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, Hempen PM, Hilgers W, Yeo CJ, Hruban RH: BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 2003, 163 (4): 1255-1260. 10.1016/S0002-9440(10)63485-2PubMedCentralPubMedCrossRef
39.
go back to reference Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, Moskaluk CA, Hahn SA, Schwarte-Waldhoff I, Schmiegel W: Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997, 57 (15): 3126-3130.PubMed Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, Moskaluk CA, Hahn SA, Schwarte-Waldhoff I, Schmiegel W: Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997, 57 (15): 3126-3130.PubMed
40.
go back to reference Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE: Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994, 8 (1): 27-32. 10.1038/ng0994-27PubMedCrossRef Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE: Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994, 8 (1): 27-32. 10.1038/ng0994-27PubMedCrossRef
41.
go back to reference Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993, 366 (6456): 704-707. 10.1038/366704a0PubMedCrossRef Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993, 366 (6456): 704-707. 10.1038/366704a0PubMedCrossRef
42.
go back to reference Li J, Poi MJ, Tsai MD: Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry. 2011, 50 (25): 5566-5582. 10.1021/bi200642ePubMedCentralPubMedCrossRef Li J, Poi MJ, Tsai MD: Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry. 2011, 50 (25): 5566-5582. 10.1021/bi200642ePubMedCentralPubMedCrossRef
43.
go back to reference Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, Goodman SN, Sohn TA, Hruban RH, Yeo CJ: Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997, 57 (9): 1731-1734.PubMed Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, Goodman SN, Sohn TA, Hruban RH, Yeo CJ: Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997, 57 (9): 1731-1734.PubMed
44.
go back to reference Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Iacono C, Hirohashi S: Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol. 1993, 142 (5): 1534-1543.PubMedCentralPubMed Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Iacono C, Hirohashi S: Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol. 1993, 142 (5): 1534-1543.PubMedCentralPubMed
45.
go back to reference DiGiuseppe JA, Redston MS, Yeo CJ, Kern SE, Hruban RH: p53-independent expression of the cyclin-dependent kinase inhibitor p21 in pancreatic carcinoma. Am J Pathol. 1995, 147 (4): 884-888.PubMedCentralPubMed DiGiuseppe JA, Redston MS, Yeo CJ, Kern SE, Hruban RH: p53-independent expression of the cyclin-dependent kinase inhibitor p21 in pancreatic carcinoma. Am J Pathol. 1995, 147 (4): 884-888.PubMedCentralPubMed
46.
go back to reference Karamitopoulou E, Zlobec I, Tornillo L, Carafa V, Schaffner T, Brunner T, Borner M, Diamantis I, Zimmermann A, Terracciano L: Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN). Pathology. 2010, 42 (3): 229-234. 10.3109/00313021003631379PubMedCrossRef Karamitopoulou E, Zlobec I, Tornillo L, Carafa V, Schaffner T, Brunner T, Borner M, Diamantis I, Zimmermann A, Terracciano L: Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN). Pathology. 2010, 42 (3): 229-234. 10.3109/00313021003631379PubMedCrossRef
47.
go back to reference Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005, 7 (5): 469-483. 10.1016/j.ccr.2005.04.023PubMedCrossRef Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005, 7 (5): 469-483. 10.1016/j.ccr.2005.04.023PubMedCrossRef
48.
go back to reference Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996, 271 (5247): 350-353. 10.1126/science.271.5247.350PubMedCrossRef Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996, 271 (5247): 350-353. 10.1126/science.271.5247.350PubMedCrossRef
49.
go back to reference Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH: Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000, 60 (7): 2002-2006.PubMed Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH: Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000, 60 (7): 2002-2006.PubMed
50.
go back to reference Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003, 3 (11): 807-821. 10.1038/nrc1208PubMedCrossRef Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003, 3 (11): 807-821. 10.1038/nrc1208PubMedCrossRef
51.
go back to reference Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA: Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res. 2007, 67 (17): 8121-8130. 10.1158/0008-5472.CAN-06-4167PubMedCrossRef Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA: Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res. 2007, 67 (17): 8121-8130. 10.1158/0008-5472.CAN-06-4167PubMedCrossRef
52.
go back to reference Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA: Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007, 11 (3): 229-243. 10.1016/j.ccr.2007.01.017PubMedCrossRef Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA: Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007, 11 (3): 229-243. 10.1016/j.ccr.2007.01.017PubMedCrossRef
53.
go back to reference Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, Adsay V, Abrams RA, Cameron JL, Kern SE: The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001, 7 (12): 4115-4121.PubMed Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, Adsay V, Abrams RA, Cameron JL, Kern SE: The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001, 7 (12): 4115-4121.PubMed
54.
go back to reference Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, Vilardell F, Wang Z, Keller JW, Banerjee P: DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009, 27 (11): 1806-1813. 10.1200/JCO.2008.17.7188PubMedCentralPubMedCrossRef Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, Vilardell F, Wang Z, Keller JW, Banerjee P: DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009, 27 (11): 1806-1813. 10.1200/JCO.2008.17.7188PubMedCentralPubMedCrossRef
55.
go back to reference Dorado J, Lonardo E, Miranda-Lorenzo I, Heeschen C: Pancreatic cancer stem cells: new insights and perspectives. J Gastroenterol. 2011, 46 (8): 966-973. 10.1007/s00535-011-0422-xPubMedCrossRef Dorado J, Lonardo E, Miranda-Lorenzo I, Heeschen C: Pancreatic cancer stem cells: new insights and perspectives. J Gastroenterol. 2011, 46 (8): 966-973. 10.1007/s00535-011-0422-xPubMedCrossRef
56.
go back to reference Matsuda Y, Kure S, Ishiwata T: Nestin and other putative cancer stem cell markers in pancreatic cancer. Med Mol Morphol. 2012, 45 (2): 59-65. 10.1007/s00795-012-0571-xPubMedCrossRef Matsuda Y, Kure S, Ishiwata T: Nestin and other putative cancer stem cell markers in pancreatic cancer. Med Mol Morphol. 2012, 45 (2): 59-65. 10.1007/s00795-012-0571-xPubMedCrossRef
57.
go back to reference Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwata T: Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol. 2012, 41 (4): 1314-1324.PubMed Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwata T: Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol. 2012, 41 (4): 1314-1324.PubMed
58.
go back to reference Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY: Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas. 2010, 39 (5): 622-626. 10.1097/MPA.0b013e3181c75f5ePubMedCrossRef Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY: Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas. 2010, 39 (5): 622-626. 10.1097/MPA.0b013e3181c75f5ePubMedCrossRef
59.
go back to reference De La OJ, Murtaugh LC: Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle. 2009, 8 (12): 1860-1864. 10.4161/cc.8.12.8744CrossRef De La OJ, Murtaugh LC: Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle. 2009, 8 (12): 1860-1864. 10.4161/cc.8.12.8744CrossRef
60.
go back to reference Mazur PK, Einwachter H, Lee M, Sipos B, Nakhai H, Rad R, Zimber-Strobl U, Strobl LJ, Radtke F, Kloppel G: Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A. 2010, 107 (30): 13438-13443. 10.1073/pnas.1002423107PubMedCentralPubMedCrossRef Mazur PK, Einwachter H, Lee M, Sipos B, Nakhai H, Rad R, Zimber-Strobl U, Strobl LJ, Radtke F, Kloppel G: Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A. 2010, 107 (30): 13438-13443. 10.1073/pnas.1002423107PubMedCentralPubMedCrossRef
61.
go back to reference Avila JL, Troutman S, Durham A, Kissil JL: Notch1 is not required for acinar-to-ductal metaplasia in a model of Kras-induced pancreatic ductal adenocarcinoma. PLoS One. 2012, 7 (12): e52133- 10.1371/journal.pone.0052133PubMedCentralPubMedCrossRef Avila JL, Troutman S, Durham A, Kissil JL: Notch1 is not required for acinar-to-ductal metaplasia in a model of Kras-induced pancreatic ductal adenocarcinoma. PLoS One. 2012, 7 (12): e52133- 10.1371/journal.pone.0052133PubMedCentralPubMedCrossRef
62.
go back to reference Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S, Wu H: PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res. 2010, 70 (18): 7114-7124. 10.1158/0008-5472.CAN-10-1649PubMedCentralPubMedCrossRef Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S, Wu H: PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res. 2010, 70 (18): 7114-7124. 10.1158/0008-5472.CAN-10-1649PubMedCentralPubMedCrossRef
63.
go back to reference Martinez-Romero C, Rooman I, Skoudy A, Guerra C, Molero X, Gonzalez A, Iglesias M, Lobato T, Bosch A, Barbacid M: The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. J Pathol. 2009, 219 (2): 205-213. 10.1002/path.2585PubMedCrossRef Martinez-Romero C, Rooman I, Skoudy A, Guerra C, Molero X, Gonzalez A, Iglesias M, Lobato T, Bosch A, Barbacid M: The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. J Pathol. 2009, 219 (2): 205-213. 10.1002/path.2585PubMedCrossRef
64.
go back to reference Skoudy A, Hernandez-Munoz I, Navarro P: Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer. 2011, 42 (2): 76-84. 10.1007/s12029-011-9258-0PubMedCrossRef Skoudy A, Hernandez-Munoz I, Navarro P: Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer. 2011, 42 (2): 76-84. 10.1007/s12029-011-9258-0PubMedCrossRef
65.
go back to reference Yu J, Ohuchida K, Mizumoto K, Ishikawa N, Ogura Y, Yamada D, Egami T, Fujita H, Ohashi S, Nagai E: Overexpression of c-met in the early stage of pancreatic carcinogenesis; altered expression is not sufficient for progression from chronic pancreatitis to pancreatic cancer. World J Gastroenterol. 2006, 12 (24): 3878-3882.PubMedCentralPubMed Yu J, Ohuchida K, Mizumoto K, Ishikawa N, Ogura Y, Yamada D, Egami T, Fujita H, Ohashi S, Nagai E: Overexpression of c-met in the early stage of pancreatic carcinogenesis; altered expression is not sufficient for progression from chronic pancreatitis to pancreatic cancer. World J Gastroenterol. 2006, 12 (24): 3878-3882.PubMedCentralPubMed
66.
go back to reference Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, Huang S, Tan D, Xie K: Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009, 69 (8): 3501-3509. 10.1158/0008-5472.CAN-08-3045PubMedCentralPubMedCrossRef Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, Huang S, Tan D, Xie K: Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009, 69 (8): 3501-3509. 10.1158/0008-5472.CAN-08-3045PubMedCentralPubMedCrossRef
67.
go back to reference Halasi M, Gartel AL: Targeting FOXM1 in cancer. Biochem Pharmacol. 2013, 85 (5): 644-652. 10.1016/j.bcp.2012.10.013PubMedCrossRef Halasi M, Gartel AL: Targeting FOXM1 in cancer. Biochem Pharmacol. 2013, 85 (5): 644-652. 10.1016/j.bcp.2012.10.013PubMedCrossRef
68.
go back to reference Koo CY, Muir KW, Lam EW: FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta. 2012, 1819 (1): 28-37. 10.1016/j.bbagrm.2011.09.004PubMedCrossRef Koo CY, Muir KW, Lam EW: FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta. 2012, 1819 (1): 28-37. 10.1016/j.bbagrm.2011.09.004PubMedCrossRef
69.
go back to reference Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH: Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev. 2010, 36 (2): 151-156. 10.1016/j.ctrv.2009.11.006PubMedCentralPubMedCrossRef Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH: Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev. 2010, 36 (2): 151-156. 10.1016/j.ctrv.2009.11.006PubMedCentralPubMedCrossRef
70.
go back to reference Ma RY, Tong TH, Leung WY, Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1. Methods Mol Biol. 2010, 647: 113-123. 10.1007/978-1-60761-738-9_6PubMedCrossRef Ma RY, Tong TH, Leung WY, Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1. Methods Mol Biol. 2010, 647: 113-123. 10.1007/978-1-60761-738-9_6PubMedCrossRef
71.
go back to reference Bellelli R, Castellone MD, Garcia-Rostan G, Ugolini C, Nucera C, Sadow PM, Nappi TC, Salerno P, Cantisani MC, Basolo F: FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocr Relat Cancer. 2012, 19 (5): 695-710. 10.1530/ERC-12-0031PubMedCentralPubMedCrossRef Bellelli R, Castellone MD, Garcia-Rostan G, Ugolini C, Nucera C, Sadow PM, Nappi TC, Salerno P, Cantisani MC, Basolo F: FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocr Relat Cancer. 2012, 19 (5): 695-710. 10.1530/ERC-12-0031PubMedCentralPubMedCrossRef
72.
go back to reference Wang IC, Zhang Y, Snyder J, Sutherland MJ, Burhans MS, Shannon JM, Park HJ, Whitsett JA, Kalinichenko VV: Increased expression of FoxM1 transcription factor in respiratory epithelium inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol. 2010, 347 (2): 301-314. 10.1016/j.ydbio.2010.08.027PubMedCentralPubMedCrossRef Wang IC, Zhang Y, Snyder J, Sutherland MJ, Burhans MS, Shannon JM, Park HJ, Whitsett JA, Kalinichenko VV: Increased expression of FoxM1 transcription factor in respiratory epithelium inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol. 2010, 347 (2): 301-314. 10.1016/j.ydbio.2010.08.027PubMedCentralPubMedCrossRef
73.
go back to reference Teh MT, Gemenetzidis E, Patel D, Tariq R, Nadir A, Bahta AW, Waseem A, Hutchison IL: FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma. PLoS One. 2012, 7 (3): e34329- 10.1371/journal.pone.0034329PubMedCentralPubMedCrossRef Teh MT, Gemenetzidis E, Patel D, Tariq R, Nadir A, Bahta AW, Waseem A, Hutchison IL: FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma. PLoS One. 2012, 7 (3): e34329- 10.1371/journal.pone.0034329PubMedCentralPubMedCrossRef
74.
go back to reference Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP: Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer. 2010, 9: 45- 10.1186/1476-4598-9-45PubMedCentralPubMedCrossRef Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP: Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer. 2010, 9: 45- 10.1186/1476-4598-9-45PubMedCentralPubMedCrossRef
75.
go back to reference Xie Z, Tan G, Ding M, Dong D, Chen T, Meng X, Huang X, Tan Y: Foxm1 transcription factor is required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic Acids Res. 2010, 38 (22): 8027-8038. 10.1093/nar/gkq715PubMedCentralPubMedCrossRef Xie Z, Tan G, Ding M, Dong D, Chen T, Meng X, Huang X, Tan Y: Foxm1 transcription factor is required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic Acids Res. 2010, 38 (22): 8027-8038. 10.1093/nar/gkq715PubMedCentralPubMedCrossRef
76.
go back to reference Gu D, Liu H, Su GH, Zhang X, Chin-Sinex H, Hanenberg H, Mendonca MS, Shannon HE, Chiorean EG, Xie J: Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis. Mol Cancer Ther. 2013, 12 (6): 1038-1048. 10.1158/1535-7163.MCT-12-1030PubMedCentralPubMedCrossRef Gu D, Liu H, Su GH, Zhang X, Chin-Sinex H, Hanenberg H, Mendonca MS, Shannon HE, Chiorean EG, Xie J: Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis. Mol Cancer Ther. 2013, 12 (6): 1038-1048. 10.1158/1535-7163.MCT-12-1030PubMedCentralPubMedCrossRef
77.
go back to reference Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK, Shankar S: GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 2013, 330 (1): 22-32. 10.1016/j.canlet.2012.11.018PubMedCentralPubMedCrossRef Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK, Shankar S: GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 2013, 330 (1): 22-32. 10.1016/j.canlet.2012.11.018PubMedCentralPubMedCrossRef
78.
go back to reference Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307 (1): 26-36. 10.1016/j.canlet.2011.03.012PubMedCentralPubMedCrossRef Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307 (1): 26-36. 10.1016/j.canlet.2011.03.012PubMedCentralPubMedCrossRef
79.
go back to reference Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH: Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res. 2011, 31 (4): 1105-1113.PubMed Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH: Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res. 2011, 31 (4): 1105-1113.PubMed
80.
go back to reference Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, Bednar F, Simeone DM: Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS One. 2013, 8 (2): e55820- 10.1371/journal.pone.0055820PubMedCentralPubMedCrossRef Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, Bednar F, Simeone DM: Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS One. 2013, 8 (2): e55820- 10.1371/journal.pone.0055820PubMedCentralPubMedCrossRef
81.
go back to reference Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, Zagorac S, Alcala S, Rodriguez-Arabaolaza I, Ramirez JC: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 2011, 9 (5): 433-446. 10.1016/j.stem.2011.10.001PubMedCrossRef Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, Zagorac S, Alcala S, Rodriguez-Arabaolaza I, Ramirez JC: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 2011, 9 (5): 433-446. 10.1016/j.stem.2011.10.001PubMedCrossRef
82.
go back to reference Takao S, Ding Q, Matsubara S: Pancreatic cancer stem cells: regulatory networks in the tumor microenvironment and targeted therapy. J Hepatobiliary Pancreat Sci. 2012, 19 (6): 614-620. 10.1007/s00534-012-0547-1PubMedCrossRef Takao S, Ding Q, Matsubara S: Pancreatic cancer stem cells: regulatory networks in the tumor microenvironment and targeted therapy. J Hepatobiliary Pancreat Sci. 2012, 19 (6): 614-620. 10.1007/s00534-012-0547-1PubMedCrossRef
83.
go back to reference Lonardo E, Frias-Aldeguer J, Hermann PC, Heeschen C: Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle. 2012, 11 (7): 1282-1290. 10.4161/cc.19679PubMedCrossRef Lonardo E, Frias-Aldeguer J, Hermann PC, Heeschen C: Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle. 2012, 11 (7): 1282-1290. 10.4161/cc.19679PubMedCrossRef
84.
go back to reference Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D: A paracrine requirement for hedgehog signalling in cancer. Nature. 2008, 455 (7211): 406-410. 10.1038/nature07275PubMedCrossRef Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D: A paracrine requirement for hedgehog signalling in cancer. Nature. 2008, 455 (7211): 406-410. 10.1038/nature07275PubMedCrossRef
85.
go back to reference Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003, 425 (6960): 851-856. 10.1038/nature02009PubMedCentralPubMedCrossRef Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003, 425 (6960): 851-856. 10.1038/nature02009PubMedCentralPubMedCrossRef
86.
go back to reference Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 2009, 9 (7): 873-886. 10.2174/156652409789105570PubMedCrossRef Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 2009, 9 (7): 873-886. 10.2174/156652409789105570PubMedCrossRef
87.
go back to reference Hao K, Tian XD, Qin CF, Xie XH, Yang YM: Hedgehog signaling pathway regulates human pancreatic cancer cell proliferation and metastasis. Oncol Rep. 2013, 29 (3): 1124-1132.PubMed Hao K, Tian XD, Qin CF, Xie XH, Yang YM: Hedgehog signaling pathway regulates human pancreatic cancer cell proliferation and metastasis. Oncol Rep. 2013, 29 (3): 1124-1132.PubMed
88.
go back to reference Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK: Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer. 2012, 131 (1): 30-40. 10.1002/ijc.26323PubMedCentralPubMedCrossRef Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK: Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer. 2012, 131 (1): 30-40. 10.1002/ijc.26323PubMedCentralPubMedCrossRef
89.
go back to reference Rodova M, Fu J, Watkins DN, Srivastava RK, Shankar S: Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One. 2012, 7 (9): e46083- 10.1371/journal.pone.0046083PubMedCentralPubMedCrossRef Rodova M, Fu J, Watkins DN, Srivastava RK, Shankar S: Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One. 2012, 7 (9): e46083- 10.1371/journal.pone.0046083PubMedCentralPubMedCrossRef
90.
go back to reference Li SH, Fu J, Watkins DN, Srivastava RK, Shankar S: Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Mol Cell Biochem. 2013, 373 (1-2): 217-227. 10.1007/s11010-012-1493-6PubMedCrossRef Li SH, Fu J, Watkins DN, Srivastava RK, Shankar S: Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Mol Cell Biochem. 2013, 373 (1-2): 217-227. 10.1007/s11010-012-1493-6PubMedCrossRef
91.
go back to reference Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S: Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed). 2011, 3: 515-528. 10.2741/e266CrossRef Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S: Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed). 2011, 3: 515-528. 10.2741/e266CrossRef
92.
go back to reference Huang FT, Zhuan-Sun YX, Zhuang YY, Wei SL, Tang J, Chen WB, Zhang SN: Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. Int J Oncol. 2012, 41 (5): 1707-1714.PubMed Huang FT, Zhuan-Sun YX, Zhuang YY, Wei SL, Tang J, Chen WB, Zhang SN: Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. Int J Oncol. 2012, 41 (5): 1707-1714.PubMed
93.
go back to reference Santisteban M: ABC transporters as molecular effectors of pancreatic oncogenic pathways: the Hedgehog-GLI model. J Gastrointest Cancer. 2010, 41 (3): 153-158. 10.1007/s12029-010-9144-1PubMedCrossRef Santisteban M: ABC transporters as molecular effectors of pancreatic oncogenic pathways: the Hedgehog-GLI model. J Gastrointest Cancer. 2010, 41 (3): 153-158. 10.1007/s12029-010-9144-1PubMedCrossRef
94.
go back to reference Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D’Haese JG: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 2009, 137 (3): 1102-1113. 10.1053/j.gastro.2009.05.053PubMedCrossRef Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D’Haese JG: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 2009, 137 (3): 1102-1113. 10.1053/j.gastro.2009.05.053PubMedCrossRef
95.
go back to reference Singh BN, Fu J, Srivastava RK, Shankar S: Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One. 2011, 6 (11): e27306- 10.1371/journal.pone.0027306PubMedCentralPubMedCrossRef Singh BN, Fu J, Srivastava RK, Shankar S: Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One. 2011, 6 (11): e27306- 10.1371/journal.pone.0027306PubMedCentralPubMedCrossRef
96.
go back to reference LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC: Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011, 17 (8): 2502-2511. 10.1158/1078-0432.CCR-10-2745PubMedCrossRef LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC: Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011, 17 (8): 2502-2511. 10.1158/1078-0432.CCR-10-2745PubMedCrossRef
97.
go back to reference Mullendore ME, Koorstra JB, Li YM, Offerhaus GJ, Fan X, Henderson CM, Matsui W, Eberhart CG, Maitra A, Feldmann G: Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res. 2009, 15 (7): 2291-2301. 10.1158/1078-0432.CCR-08-2004PubMedCentralPubMedCrossRef Mullendore ME, Koorstra JB, Li YM, Offerhaus GJ, Fan X, Henderson CM, Matsui W, Eberhart CG, Maitra A, Feldmann G: Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res. 2009, 15 (7): 2291-2301. 10.1158/1078-0432.CCR-08-2004PubMedCentralPubMedCrossRef
98.
99.
100.
go back to reference Zhou ZC, Dong QG, Fu DL, Gong N, Ni QX: Characteristics of Notch2 pancreatic cancer stem-like cells and the relationship with centroacinar cells. Cell Biol Int. 2013, 37 (8): 805-811. 10.1002/cbin.10102PubMedCrossRef Zhou ZC, Dong QG, Fu DL, Gong N, Ni QX: Characteristics of Notch2 pancreatic cancer stem-like cells and the relationship with centroacinar cells. Cell Biol Int. 2013, 37 (8): 805-811. 10.1002/cbin.10102PubMedCrossRef
101.
go back to reference Yabuuchi S, Pai SG, Campbell NR, Wilde RD, Oliveira ED, Korangath P, Streppel M, Rasheed ZA, Hidalgo M, Maitra A: Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013, 335 (1): 41-51. 10.1016/j.canlet.2013.01.054PubMedCentralPubMedCrossRef Yabuuchi S, Pai SG, Campbell NR, Wilde RD, Oliveira ED, Korangath P, Streppel M, Rasheed ZA, Hidalgo M, Maitra A: Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013, 335 (1): 41-51. 10.1016/j.canlet.2013.01.054PubMedCentralPubMedCrossRef
102.
go back to reference Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010, 28 (1): 5-16.PubMedCentralPubMed Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010, 28 (1): 5-16.PubMedCentralPubMed
103.
go back to reference Song W, Tao K, Li H, Jin C, Song Z, Li J, Shi H, Li X, Dang Z, Dou K: Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci. 2010, 101 (7): 1754-1760. 10.1111/j.1349-7006.2010.01577.xPubMedCrossRef Song W, Tao K, Li H, Jin C, Song Z, Li J, Shi H, Li X, Dang Z, Dou K: Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci. 2010, 101 (7): 1754-1760. 10.1111/j.1349-7006.2010.01577.xPubMedCrossRef
104.
go back to reference Yin T, Wei H, Gou S, Shi P, Yang Z, Zhao G, Wang C: Cancer stem-like cells enriched in panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci. 2011, 12 (3): 1595-1604.PubMedCentralPubMedCrossRef Yin T, Wei H, Gou S, Shi P, Yang Z, Zhao G, Wang C: Cancer stem-like cells enriched in panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci. 2011, 12 (3): 1595-1604.PubMedCentralPubMedCrossRef
105.
go back to reference Moon SH, Kim DK, Cha Y, Jeon I, Song J, Park KS: PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. Int J Oncol. 2013, 42 (3): 921-928.PubMed Moon SH, Kim DK, Cha Y, Jeon I, Song J, Park KS: PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. Int J Oncol. 2013, 42 (3): 921-928.PubMed
106.
go back to reference Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Cao B: Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013, 110 (17): 6829-6834. 10.1073/pnas.1217002110PubMedCentralPubMedCrossRef Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Cao B: Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013, 110 (17): 6829-6834. 10.1073/pnas.1217002110PubMedCentralPubMedCrossRef
107.
go back to reference Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, Chang M, Scott EW, Huang EH: Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res. 2012, 72 (19): 5091-5100. 10.1158/0008-5472.CAN-12-1806PubMedCentralPubMedCrossRef Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, Chang M, Scott EW, Huang EH: Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res. 2012, 72 (19): 5091-5100. 10.1158/0008-5472.CAN-12-1806PubMedCentralPubMedCrossRef
108.
go back to reference Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG: FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 2002, 62 (16): 4773-4780.PubMed Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG: FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 2002, 62 (16): 4773-4780.PubMed
109.
go back to reference Pignot G, Vieillefond A, Vacher S, Zerbib M, Debre B, Lidereau R, Amsellem-Ouazana D, Bieche I: Hedgehog pathway activation in human transitional cell carcinoma of the bladder. Br J Cancer. 2012, 106 (6): 1177-1186. 10.1038/bjc.2012.55PubMedCentralPubMedCrossRef Pignot G, Vieillefond A, Vacher S, Zerbib M, Debre B, Lidereau R, Amsellem-Ouazana D, Bieche I: Hedgehog pathway activation in human transitional cell carcinoma of the bladder. Br J Cancer. 2012, 106 (6): 1177-1186. 10.1038/bjc.2012.55PubMedCentralPubMedCrossRef
110.
go back to reference Douard R, Moutereau S, Pernet P, Chimingqi M, Allory Y, Manivet P, Conti M, Vaubourdolle M, Cugnenc PH, Loric S: Sonic Hedgehog-dependent proliferation in a series of patients with colorectal cancer. Surgery. 2006, 139 (5): 665-670. 10.1016/j.surg.2005.10.012PubMedCrossRef Douard R, Moutereau S, Pernet P, Chimingqi M, Allory Y, Manivet P, Conti M, Vaubourdolle M, Cugnenc PH, Loric S: Sonic Hedgehog-dependent proliferation in a series of patients with colorectal cancer. Surgery. 2006, 139 (5): 665-670. 10.1016/j.surg.2005.10.012PubMedCrossRef
111.
go back to reference Gialmanidis IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H: Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer. 2009, 66 (1): 64-74. 10.1016/j.lungcan.2009.01.007PubMedCrossRef Gialmanidis IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H: Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer. 2009, 66 (1): 64-74. 10.1016/j.lungcan.2009.01.007PubMedCrossRef
112.
go back to reference Lin M, Guo LM, Liu H, Du J, Yang J, Zhang LJ, Zhang B: Nuclear accumulation of glioma-associated oncogene 2 protein and enhanced expression of forkhead-box transcription factor M1 protein in human hepatocellular carcinoma. Histol Histopathol. 2010, 25 (10): 1269-1275.PubMed Lin M, Guo LM, Liu H, Du J, Yang J, Zhang LJ, Zhang B: Nuclear accumulation of glioma-associated oncogene 2 protein and enhanced expression of forkhead-box transcription factor M1 protein in human hepatocellular carcinoma. Histol Histopathol. 2010, 25 (10): 1269-1275.PubMed
113.
go back to reference Park HJ, Gusarova G, Wang Z, Carr JR, Li J, Kim KH, Qiu J, Park YD, Williamson PR, Hay N: Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med. 2011, 3 (1): 21-34. 10.1002/emmm.201000107PubMedCentralPubMedCrossRef Park HJ, Gusarova G, Wang Z, Carr JR, Li J, Kim KH, Qiu J, Park YD, Williamson PR, Hay N: Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med. 2011, 3 (1): 21-34. 10.1002/emmm.201000107PubMedCentralPubMedCrossRef
114.
go back to reference Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL, Lau LF, Costa RH, Raychaudhuri P: FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 2009, 28 (19): 2908-2918. 10.1038/emboj.2009.239PubMedCentralPubMedCrossRef Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL, Lau LF, Costa RH, Raychaudhuri P: FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 2009, 28 (19): 2908-2918. 10.1038/emboj.2009.239PubMedCentralPubMedCrossRef
115.
go back to reference Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Wojewoda C, Miele L, Sarkar FH: Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem. 2011, 112 (1): 78-88. 10.1002/jcb.22770PubMedCentralPubMedCrossRef Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Wojewoda C, Miele L, Sarkar FH: Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem. 2011, 112 (1): 78-88. 10.1002/jcb.22770PubMedCentralPubMedCrossRef
116.
go back to reference Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, Yao KM: FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem. 2008, 283 (24): 16545-16553. 10.1074/jbc.M709604200PubMedCentralPubMedCrossRef Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, Yao KM: FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem. 2008, 283 (24): 16545-16553. 10.1074/jbc.M709604200PubMedCentralPubMedCrossRef
117.
118.
go back to reference Fuchs E, Tumbar T, Guasch G: Socializing with the neighbors: stem cells and their niche. Cell. 2004, 116 (6): 769-778. 10.1016/S0092-8674(04)00255-7PubMedCrossRef Fuchs E, Tumbar T, Guasch G: Socializing with the neighbors: stem cells and their niche. Cell. 2004, 116 (6): 769-778. 10.1016/S0092-8674(04)00255-7PubMedCrossRef
119.
go back to reference Filatova A, Acker T, Garvalov BK: The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta. 2013, 1830 (2): 2496-2508. 10.1016/j.bbagen.2012.10.008PubMedCrossRef Filatova A, Acker T, Garvalov BK: The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta. 2013, 1830 (2): 2496-2508. 10.1016/j.bbagen.2012.10.008PubMedCrossRef
120.
go back to reference Takakura N: Formation and regulation of the cancer stem cell niche. Cancer Sci. 2012, 103 (7): 1177-1181. 10.1111/j.1349-7006.2012.02270.xPubMedCrossRef Takakura N: Formation and regulation of the cancer stem cell niche. Cancer Sci. 2012, 103 (7): 1177-1181. 10.1111/j.1349-7006.2012.02270.xPubMedCrossRef
121.
go back to reference McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ: Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res. 2009, 7 (4): 489-497. 10.1158/1541-7786.MCR-08-0360PubMedCrossRef McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ: Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res. 2009, 7 (4): 489-497. 10.1158/1541-7786.MCR-08-0360PubMedCrossRef
122.
go back to reference Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011, 71 (13): 4640-4652. 10.1158/0008-5472.CAN-10-3320PubMedCentralPubMedCrossRef Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011, 71 (13): 4640-4652. 10.1158/0008-5472.CAN-10-3320PubMedCentralPubMedCrossRef
123.
go back to reference Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y: Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology. 2011, 78 (4): 181-192. 10.1159/000325538PubMedCrossRef Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y: Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology. 2011, 78 (4): 181-192. 10.1159/000325538PubMedCrossRef
124.
go back to reference Xia LM, Huang WJ, Wang B, Liu M, Zhang Q, Yan W, Zhu Q, Luo M, Zhou ZZ, Tian DA: Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1. J Cell Biochem. 2009, 106 (2): 247-256. 10.1002/jcb.21996PubMedCrossRef Xia LM, Huang WJ, Wang B, Liu M, Zhang Q, Yan W, Zhu Q, Luo M, Zhou ZZ, Tian DA: Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1. J Cell Biochem. 2009, 106 (2): 247-256. 10.1002/jcb.21996PubMedCrossRef
125.
go back to reference Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T: Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2008, 295 (4): G709-G717. 10.1152/ajpgi.90356.2008PubMedCrossRef Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T: Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2008, 295 (4): G709-G717. 10.1152/ajpgi.90356.2008PubMedCrossRef
126.
go back to reference Hamada S, Masamune A, Takikawa T, Suzuki N, Kikuta K, Hirota M, Hamada H, Kobune M, Satoh K, Shimosegawa T: Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun. 2012, 421 (2): 349-354. 10.1016/j.bbrc.2012.04.014PubMedCrossRef Hamada S, Masamune A, Takikawa T, Suzuki N, Kikuta K, Hirota M, Hamada H, Kobune M, Satoh K, Shimosegawa T: Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun. 2012, 421 (2): 349-354. 10.1016/j.bbrc.2012.04.014PubMedCrossRef
127.
go back to reference Katsuno Y, Lamouille S, Derynck R: TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013, 25 (1): 76-84. 10.1097/CCO.0b013e32835b6371PubMedCrossRef Katsuno Y, Lamouille S, Derynck R: TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013, 25 (1): 76-84. 10.1097/CCO.0b013e32835b6371PubMedCrossRef
128.
go back to reference Kabashima A, Higuchi H, Takaishi H, Matsuzaki Y, Suzuki S, Izumiya M, Iizuka H, Sakai G, Hozawa S, Azuma T: Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. Int J Cancer. 2009, 124 (12): 2771-2779. 10.1002/ijc.24349PubMedCrossRef Kabashima A, Higuchi H, Takaishi H, Matsuzaki Y, Suzuki S, Izumiya M, Iizuka H, Sakai G, Hozawa S, Azuma T: Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. Int J Cancer. 2009, 124 (12): 2771-2779. 10.1002/ijc.24349PubMedCrossRef
129.
go back to reference Liu Z, Bandyopadhyay A, Nichols RW, Wang L, Hinck AP, Wang S, Sun LZ: Blockade of autocrine TGF-beta signaling inhibits stem cell phenotype, survival, and metastasis of murine breast cancer cells. J Stem Cell Res Ther. 2012, 2 (1): 1-8.PubMedCentralPubMedCrossRef Liu Z, Bandyopadhyay A, Nichols RW, Wang L, Hinck AP, Wang S, Sun LZ: Blockade of autocrine TGF-beta signaling inhibits stem cell phenotype, survival, and metastasis of murine breast cancer cells. J Stem Cell Res Ther. 2012, 2 (1): 1-8.PubMedCentralPubMedCrossRef
130.
go back to reference Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133 (4): 704-715. 10.1016/j.cell.2008.03.027PubMedCentralPubMedCrossRef Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133 (4): 704-715. 10.1016/j.cell.2008.03.027PubMedCentralPubMedCrossRef
131.
go back to reference Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL: TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011, 71 (13): 4707-4719. 10.1158/0008-5472.CAN-10-4554PubMedCentralPubMedCrossRef Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL: TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011, 71 (13): 4707-4719. 10.1158/0008-5472.CAN-10-4554PubMedCentralPubMedCrossRef
132.
go back to reference Watabe T, Miyazono K: Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19 (1): 103-115. 10.1038/cr.2008.323PubMedCrossRef Watabe T, Miyazono K: Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19 (1): 103-115. 10.1038/cr.2008.323PubMedCrossRef
133.
go back to reference Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR: Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010, 16 (12): 1400-1406. 10.1038/nm.2252PubMedCentralPubMedCrossRef Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR: Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010, 16 (12): 1400-1406. 10.1038/nm.2252PubMedCentralPubMedCrossRef
134.
go back to reference Li J, Wang Y, Luo J, Fu Z, Ying J, Yu Y, Yu W: miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett. 2012, 586 (20): 3761-3765. 10.1016/j.febslet.2012.09.016PubMedCrossRef Li J, Wang Y, Luo J, Fu Z, Ying J, Yu Y, Yu W: miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett. 2012, 586 (20): 3761-3765. 10.1016/j.febslet.2012.09.016PubMedCrossRef
135.
go back to reference Balli D, Ustiyan V, Zhang Y, Wang IC, Masino AJ, Ren X, Whitsett JA, Kalinichenko VV, Kalin TV: Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J. 2013, 32 (2): 231-244. 10.1038/emboj.2012.336PubMedCentralPubMedCrossRef Balli D, Ustiyan V, Zhang Y, Wang IC, Masino AJ, Ren X, Whitsett JA, Kalinichenko VV, Kalin TV: Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J. 2013, 32 (2): 231-244. 10.1038/emboj.2012.336PubMedCentralPubMedCrossRef
136.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013PubMedCrossRef Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013PubMedCrossRef
138.
go back to reference Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM: Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012, 2012: 948098-PubMedCentralPubMedCrossRef Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM: Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012, 2012: 948098-PubMedCentralPubMedCrossRef
139.
go back to reference Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D: Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013, 73 (3): 1128-1141. 10.1158/0008-5472.CAN-12-2731PubMedCentralPubMedCrossRef Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D: Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013, 73 (3): 1128-1141. 10.1158/0008-5472.CAN-12-2731PubMedCentralPubMedCrossRef
140.
go back to reference Kurahara H, Takao S, Kuwahata T, Nagai T, Ding Q, Maeda K, Shinchi H, Mataki Y, Maemura K, Matsuyama T: Clinical significance of folate receptor beta-expressing tumor-associated macrophages in pancreatic cancer. Ann Surg Oncol. 2012, 19 (7): 2264-2271. 10.1245/s10434-012-2263-0PubMedCrossRef Kurahara H, Takao S, Kuwahata T, Nagai T, Ding Q, Maeda K, Shinchi H, Mataki Y, Maemura K, Matsuyama T: Clinical significance of folate receptor beta-expressing tumor-associated macrophages in pancreatic cancer. Ann Surg Oncol. 2012, 19 (7): 2264-2271. 10.1245/s10434-012-2263-0PubMedCrossRef
141.
go back to reference Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y: Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells. 2013, 31 (2): 248-258. 10.1002/stem.1281PubMedCrossRef Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y: Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells. 2013, 31 (2): 248-258. 10.1002/stem.1281PubMedCrossRef
142.
go back to reference Ding J, Jin W, Chen C, Shao Z, Wu J: Tumor associated macrophage x cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PLoS One. 2012, 7 (7): e41942- 10.1371/journal.pone.0041942PubMedCentralPubMedCrossRef Ding J, Jin W, Chen C, Shao Z, Wu J: Tumor associated macrophage x cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PLoS One. 2012, 7 (7): e41942- 10.1371/journal.pone.0041942PubMedCentralPubMedCrossRef
143.
go back to reference Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB: Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010, 12 (11): 1113-1125. 10.1093/neuonc/noq082PubMedCentralPubMedCrossRef Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB: Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010, 12 (11): 1113-1125. 10.1093/neuonc/noq082PubMedCentralPubMedCrossRef
144.
go back to reference Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM: Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008, 14 (24): 8205-8212. 10.1158/1078-0432.CCR-08-0644PubMedCrossRef Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM: Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008, 14 (24): 8205-8212. 10.1158/1078-0432.CCR-08-0644PubMedCrossRef
145.
go back to reference Ren X, Zhang Y, Snyder J, Cross ER, Shah TA, Kalin TV, Kalinichenko VV: Forkhead box M1 transcription factor is required for macrophage recruitment during liver repair. Mol Cell Biol. 2010, 30 (22): 5381-5393. 10.1128/MCB.00876-10PubMedCentralPubMedCrossRef Ren X, Zhang Y, Snyder J, Cross ER, Shah TA, Kalin TV, Kalinichenko VV: Forkhead box M1 transcription factor is required for macrophage recruitment during liver repair. Mol Cell Biol. 2010, 30 (22): 5381-5393. 10.1128/MCB.00876-10PubMedCentralPubMedCrossRef
146.
go back to reference Ren X, Shah TA, Ustiyan V, Zhang Y, Shinn J, Chen G, Whitsett JA, Kalin TV, Kalinichenko VV: FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol Cell Biol. 2013, 33 (2): 371-386. 10.1128/MCB.00934-12PubMedCentralPubMedCrossRef Ren X, Shah TA, Ustiyan V, Zhang Y, Shinn J, Chen G, Whitsett JA, Kalin TV, Kalinichenko VV: FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol Cell Biol. 2013, 33 (2): 371-386. 10.1128/MCB.00934-12PubMedCentralPubMedCrossRef
147.
go back to reference Balli D, Ren X, Chou FS, Cross E, Zhang Y, Kalinichenko VV, Kalin TV: Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene. 2012, 31 (34): 3875-3888. 10.1038/onc.2011.549PubMedCentralPubMedCrossRef Balli D, Ren X, Chou FS, Cross E, Zhang Y, Kalinichenko VV, Kalin TV: Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene. 2012, 31 (34): 3875-3888. 10.1038/onc.2011.549PubMedCentralPubMedCrossRef
Metadata
Title
The roles of FOXM1 in pancreatic stem cells and carcinogenesis
Authors
Ming Quan
Peipei Wang
Jiujie Cui
Yong Gao
Keping Xie
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-159

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine