Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis

Authors: Aditi Gupta, Wei Cao, Meenakshi A Chellaiah

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL), a protein essential for osteoclast differentiation and activation. However, the mechanism(s) by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells.

Results

We show here that phosphorylation of Smad 5 by integrin αvβ3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4) detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations.

Conclusions

Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvβ3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference van der Gulden JW, Kiemeney LA, Verbeek AL, Straatman H: Mortality trend from prostate cancer in The Netherlands (1950–1989) 7. Prostate. 1994, 24: 33-38. 10.1002/pros.2990240108CrossRef van der Gulden JW, Kiemeney LA, Verbeek AL, Straatman H: Mortality trend from prostate cancer in The Netherlands (1950–1989) 7. Prostate. 1994, 24: 33-38. 10.1002/pros.2990240108CrossRef
2.
go back to reference Brawley OW: Prostate cancer epidemiology in the United States. World J Urol. 2012, 30: 195-200. 10.1007/s00345-012-0824-2CrossRef Brawley OW: Prostate cancer epidemiology in the United States. World J Urol. 2012, 30: 195-200. 10.1007/s00345-012-0824-2CrossRef
3.
go back to reference Carlin BI, Andriole GL: The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma 1. Cancer. 2000, 88: 2989-2994. 10.1002/1097-0142(20000615)88:12+<2989::AID-CNCR14>3.0.CO;2-QCrossRef Carlin BI, Andriole GL: The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma 1. Cancer. 2000, 88: 2989-2994. 10.1002/1097-0142(20000615)88:12+<2989::AID-CNCR14>3.0.CO;2-QCrossRef
4.
go back to reference Sanchez-Sweatman OH, Orr FW, Singh G: Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis. 1998, 18: 297-305. 10.1159/000024522CrossRef Sanchez-Sweatman OH, Orr FW, Singh G: Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis. 1998, 18: 297-305. 10.1159/000024522CrossRef
5.
go back to reference Dougall WC: RANKL signaling in bone physiology and cancer. Curr Opin Support Palliat Care. 2007, 1: 317-322. 10.1097/SPC.0b013e3282f335beCrossRef Dougall WC: RANKL signaling in bone physiology and cancer. Curr Opin Support Palliat Care. 2007, 1: 317-322. 10.1097/SPC.0b013e3282f335beCrossRef
6.
go back to reference Hofbauer LC, Schoppet M: Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases12. JAMA. 2004, 292: 490-495. 10.1001/jama.292.4.490CrossRef Hofbauer LC, Schoppet M: Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases12. JAMA. 2004, 292: 490-495. 10.1001/jama.292.4.490CrossRef
7.
go back to reference Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998, 93: 165-176. 10.1016/S0092-8674(00)81569-XCrossRef Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998, 93: 165-176. 10.1016/S0092-8674(00)81569-XCrossRef
8.
go back to reference Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C: Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest. 2001, 107: 1235-1244. 10.1172/JCI11685PubMedCentralCrossRef Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C: Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest. 2001, 107: 1235-1244. 10.1172/JCI11685PubMedCentralCrossRef
9.
go back to reference Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET: Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res. 2003, 63: 7883-7890. Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET: Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res. 2003, 63: 7883-7890.
10.
go back to reference Miller RE, Roudier M, Jones J, Armstrong A, Canon J, Dougall WC: RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther. 2008, 7: 2160-2169. 10.1158/1535-7163.MCT-08-0046CrossRef Miller RE, Roudier M, Jones J, Armstrong A, Canon J, Dougall WC: RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther. 2008, 7: 2160-2169. 10.1158/1535-7163.MCT-08-0046CrossRef
11.
go back to reference Yonou H, Ochiai A, Ashimine S, Maeda H, Horiguchi Y, Yoshioka K: The bisphosphonate YM529 inhibits osteoblastic bone tumor proliferation of prostate cancer2. Prostate. 2007, 67: 999-1009. 10.1002/pros.20592CrossRef Yonou H, Ochiai A, Ashimine S, Maeda H, Horiguchi Y, Yoshioka K: The bisphosphonate YM529 inhibits osteoblastic bone tumor proliferation of prostate cancer2. Prostate. 2007, 67: 999-1009. 10.1002/pros.20592CrossRef
12.
go back to reference Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ: Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 2005, 146: 1727-1736. 10.1210/en.2004-1211CrossRef Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ: Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 2005, 146: 1727-1736. 10.1210/en.2004-1211CrossRef
13.
go back to reference Liao J, McCauley LK: Skeletal metastasis: Established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer Metastasis Rev. 2006, 25: 559-571.CrossRef Liao J, McCauley LK: Skeletal metastasis: Established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer Metastasis Rev. 2006, 25: 559-571.CrossRef
14.
go back to reference Baniwal SK, Khalid O, Sir D, Buchanan G, Coetzee GA, Frenkel B: Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol. 2009, 23: 1203-1214. 10.1210/me.2008-0470PubMedCentralCrossRef Baniwal SK, Khalid O, Sir D, Buchanan G, Coetzee GA, Frenkel B: Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol. 2009, 23: 1203-1214. 10.1210/me.2008-0470PubMedCentralCrossRef
15.
go back to reference Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB: Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 2004, 64: 4506-4513. 10.1158/0008-5472.CAN-03-3851CrossRef Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB: Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 2004, 64: 4506-4513. 10.1158/0008-5472.CAN-03-3851CrossRef
16.
go back to reference Brubaker KD, Vessella RL, Brown LG, Corey E: Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate. 2003, 56: 13-22. 10.1002/pros.10233CrossRef Brubaker KD, Vessella RL, Brown LG, Corey E: Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate. 2003, 56: 13-22. 10.1002/pros.10233CrossRef
17.
go back to reference Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ: Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci U S A. 2005, 102: 1454-1459. 10.1073/pnas.0409121102PubMedCentralCrossRef Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ: Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci U S A. 2005, 102: 1454-1459. 10.1073/pnas.0409121102PubMedCentralCrossRef
18.
go back to reference Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA: Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 2010, 29: 811-821. 10.1038/onc.2009.389PubMedCentralCrossRef Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA: Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 2010, 29: 811-821. 10.1038/onc.2009.389PubMedCentralCrossRef
19.
go back to reference Selvamurugan N, Shimizu E, Lee M, Liu T, Li H, Partridge NC: Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett. 2009, 583: 1141-1146. 10.1016/j.febslet.2009.02.040CrossRef Selvamurugan N, Shimizu E, Lee M, Liu T, Li H, Partridge NC: Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett. 2009, 583: 1141-1146. 10.1016/j.febslet.2009.02.040CrossRef
20.
go back to reference Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006, 25: 589-600.CrossRef Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006, 25: 589-600.CrossRef
21.
go back to reference Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD: Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res. 2008, 68: 7795-7802. 10.1158/0008-5472.CAN-08-1078PubMedCentralCrossRef Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD: Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res. 2008, 68: 7795-7802. 10.1158/0008-5472.CAN-08-1078PubMedCentralCrossRef
22.
go back to reference Kitazawa R, Mori K, Yamaguchi A, Kondo T, Kitazawa S: Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J Cell Biochem. 2008, 105: 1289-1297. 10.1002/jcb.21929CrossRef Kitazawa R, Mori K, Yamaguchi A, Kondo T, Kitazawa S: Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J Cell Biochem. 2008, 105: 1289-1297. 10.1002/jcb.21929CrossRef
23.
go back to reference Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo W-H: Interacton and functional cooperation of PEBP2/CBF with Smads. J Biol Chem. 1999, 274: 31577-31582. 10.1074/jbc.274.44.31577CrossRef Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo W-H: Interacton and functional cooperation of PEBP2/CBF with Smads. J Biol Chem. 1999, 274: 31577-31582. 10.1074/jbc.274.44.31577CrossRef
24.
go back to reference Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J: Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs. 2009, 189: 133-137. 10.1159/000151719CrossRef Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J: Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs. 2009, 189: 133-137. 10.1159/000151719CrossRef
25.
go back to reference Ito Y, Zhang YW: A RUNX2/PEBP2alphaA/CBFA1 mutation in cleidocranial dysplasia revealing the link between the gene and Smad. J Bone Miner Metab. 2001, 19: 188-194. 10.1007/s007740170041CrossRef Ito Y, Zhang YW: A RUNX2/PEBP2alphaA/CBFA1 mutation in cleidocranial dysplasia revealing the link between the gene and Smad. J Bone Miner Metab. 2001, 19: 188-194. 10.1007/s007740170041CrossRef
26.
go back to reference Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T: Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000, 20: 8783-8792. 10.1128/MCB.20.23.8783-8792.2000PubMedCentralCrossRef Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T: Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000, 20: 8783-8792. 10.1128/MCB.20.23.8783-8792.2000PubMedCentralCrossRef
27.
go back to reference Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM: BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem. 2010, 285: 36410-36419. 10.1074/jbc.M110.142307PubMedCentralCrossRef Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM: BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem. 2010, 285: 36410-36419. 10.1074/jbc.M110.142307PubMedCentralCrossRef
28.
go back to reference Desai B, Rogers MJ, Chellaiah MA: Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer. 2007, 6: 18- 10.1186/1476-4598-6-18PubMedCentralCrossRef Desai B, Rogers MJ, Chellaiah MA: Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer. 2007, 6: 18- 10.1186/1476-4598-6-18PubMedCentralCrossRef
29.
go back to reference Cooper CR, Chay CH, Pienta KJ: The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia. 2002, 4: 191-194. 10.1038/sj.neo.7900224PubMedCentralCrossRef Cooper CR, Chay CH, Pienta KJ: The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia. 2002, 4: 191-194. 10.1038/sj.neo.7900224PubMedCentralCrossRef
30.
go back to reference Weber GF, Ashkar S: Molecular mechanisms of tumor dissemination in primary and metastatic brain cancers. Brain Res Bull. 2000, 53: 421-424. 10.1016/S0361-9230(00)00379-8CrossRef Weber GF, Ashkar S: Molecular mechanisms of tumor dissemination in primary and metastatic brain cancers. Brain Res Bull. 2000, 53: 421-424. 10.1016/S0361-9230(00)00379-8CrossRef
31.
go back to reference Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F: Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 2002, 16: 1266-1268. Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F: Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 2002, 16: 1266-1268.
32.
go back to reference Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J: Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004, 114: 1714-1725.PubMedCentralCrossRef Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J: Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004, 114: 1714-1725.PubMedCentralCrossRef
33.
go back to reference Naor D, Sionov RV, Zahalka M, Rochman M, Holzmann B, Ish-Shalom D: Organ-specific requirements for cell adhesion molecules during lymphoma cell dissemination. Curr Top Microbiol Immunol. 1998, 231: 143-166. 10.1007/978-3-642-71987-5_9 Naor D, Sionov RV, Zahalka M, Rochman M, Holzmann B, Ish-Shalom D: Organ-specific requirements for cell adhesion molecules during lymphoma cell dissemination. Curr Top Microbiol Immunol. 1998, 231: 143-166. 10.1007/978-3-642-71987-5_9
34.
go back to reference Sy MS, Guo YJ, Stamenkovic I: Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med. 1991, 174: 859-866. 10.1084/jem.174.4.859CrossRef Sy MS, Guo YJ, Stamenkovic I: Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med. 1991, 174: 859-866. 10.1084/jem.174.4.859CrossRef
35.
go back to reference Gao AC, Lou W, Dong JT, Isaacs JT: CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res. 1997, 57: 846-849. Gao AC, Lou W, Dong JT, Isaacs JT: CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res. 1997, 57: 846-849.
36.
go back to reference Noordzij MA, Van Steenbrugge GJ, Schroder FH, Van Der Kwast TH: Decreased expression of CD44 in metastatic prostate cancer. Int J Cancer. 1999, 84: 478-483. 10.1002/(SICI)1097-0215(19991022)84:5<478::AID-IJC5>3.0.CO;2-NCrossRef Noordzij MA, Van Steenbrugge GJ, Schroder FH, Van Der Kwast TH: Decreased expression of CD44 in metastatic prostate cancer. Int J Cancer. 1999, 84: 478-483. 10.1002/(SICI)1097-0215(19991022)84:5<478::AID-IJC5>3.0.CO;2-NCrossRef
37.
go back to reference Tanne Y, Tanimoto K, Tanaka N, Ueki M, Lin YY, Ohkuma S: Expression and activity of Runx2 mediated by hyaluronan during chondrocyte differentiation. Arch Oral Biol. 2008, 53: 478-487. 10.1016/j.archoralbio.2007.12.007CrossRef Tanne Y, Tanimoto K, Tanaka N, Ueki M, Lin YY, Ohkuma S: Expression and activity of Runx2 mediated by hyaluronan during chondrocyte differentiation. Arch Oral Biol. 2008, 53: 478-487. 10.1016/j.archoralbio.2007.12.007CrossRef
38.
go back to reference Hayer S, Steiner G, Gortz B, Reiter E, Tohidast-Akrad M, Amling M: CD44 is a determinant of inflammatory bone loss. J Exp Med. 2005, 201: 903-914. 10.1084/jem.20040852PubMedCentralCrossRef Hayer S, Steiner G, Gortz B, Reiter E, Tohidast-Akrad M, Amling M: CD44 is a determinant of inflammatory bone loss. J Exp Med. 2005, 201: 903-914. 10.1084/jem.20040852PubMedCentralCrossRef
39.
go back to reference Cao J, Singleton P, Majumdar S, Burghardt A, Bourguignon GJ, Halloran BP: Hyaluronan increases RANKL expression in mouse primary osteoblasts through CD44. A potential role in age-related bone loss. J Bone Miner Res. 2003, 18 (S2): S78-Ref Type: Abstract. Cao J, Singleton P, Majumdar S, Burghardt A, Bourguignon GJ, Halloran BP: Hyaluronan increases RANKL expression in mouse primary osteoblasts through CD44. A potential role in age-related bone loss. J Bone Miner Res. 2003, 18 (S2): S78-Ref Type: Abstract.
40.
go back to reference Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S: Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem. 2007, 282: 10814-10825. 10.1074/jbc.M606991200CrossRef Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S: Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem. 2007, 282: 10814-10825. 10.1074/jbc.M606991200CrossRef
41.
go back to reference Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T: Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis. 2009, 26: 433-446. 10.1007/s10585-009-9242-2PubMedCentralCrossRef Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T: Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis. 2009, 26: 433-446. 10.1007/s10585-009-9242-2PubMedCentralCrossRef
42.
go back to reference Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL: CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008, 98: 756-765. 10.1038/sj.bjc.6604242PubMedCentralCrossRef Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL: CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008, 98: 756-765. 10.1038/sj.bjc.6604242PubMedCentralCrossRef
43.
go back to reference Dhir R, Gau JT, Krill D, Bastacky S, Bahnson RR, Cooper DL: CD44 Expression in Benign and Neoplastic Human Prostates. Mol Diagn. 1997, 2: 197-204. 10.1016/S1084-8592(97)80029-XCrossRef Dhir R, Gau JT, Krill D, Bastacky S, Bahnson RR, Cooper DL: CD44 Expression in Benign and Neoplastic Human Prostates. Mol Diagn. 1997, 2: 197-204. 10.1016/S1084-8592(97)80029-XCrossRef
44.
go back to reference Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005, 25: 8581-8591. 10.1128/MCB.25.19.8581-8591.2005PubMedCentralCrossRef Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005, 25: 8581-8591. 10.1128/MCB.25.19.8581-8591.2005PubMedCentralCrossRef
45.
go back to reference Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR: The pathophysiology of HOX genes and their role in cancer. J Pathol. 2005, 205: 154-171. 10.1002/path.1710CrossRef Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR: The pathophysiology of HOX genes and their role in cancer. J Pathol. 2005, 205: 154-171. 10.1002/path.1710CrossRef
46.
go back to reference Roccisana JL, Kawanabe N, Kajiya H, Koide M, Roodman GD, Reddy SV: Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells. J Biol Chem. 2004, 279: 10500-10507.CrossRef Roccisana JL, Kawanabe N, Kajiya H, Koide M, Roodman GD, Reddy SV: Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells. J Biol Chem. 2004, 279: 10500-10507.CrossRef
47.
go back to reference Cao JJ, Singleton PA, Majumdar S, Boudignon B, Burghardt A, Kurimoto P: Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. J Bone Miner Res. 2005, 20: 30-40. 10.1359/JBMR.041014CrossRef Cao JJ, Singleton PA, Majumdar S, Boudignon B, Burghardt A, Kurimoto P: Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. J Bone Miner Res. 2005, 20: 30-40. 10.1359/JBMR.041014CrossRef
48.
go back to reference Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ: PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011, 71: 1668-1679. 10.1002/pros.21383PubMedCentralCrossRef Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ: PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011, 71: 1668-1679. 10.1002/pros.21383PubMedCentralCrossRef
49.
go back to reference Yu C, Yao Z, Dai J, Zhang H, Escara-Wilke J, Zhang X: ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo. 2011, 25: 69-76. Yu C, Yao Z, Dai J, Zhang H, Escara-Wilke J, Zhang X: ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo. 2011, 25: 69-76.
50.
go back to reference Mori K, Kitazawa R, Kondo T, Maeda S, Yamaguchi A, Kitazawa S: Modulation of mouse RANKL gene expression by Runx2 and PKA pathway. J Cell Biochem. 2006, 98: 1629-1644. 10.1002/jcb.20891CrossRef Mori K, Kitazawa R, Kondo T, Maeda S, Yamaguchi A, Kitazawa S: Modulation of mouse RANKL gene expression by Runx2 and PKA pathway. J Cell Biochem. 2006, 98: 1629-1644. 10.1002/jcb.20891CrossRef
51.
go back to reference Chang SF, Chang CA, Lee DY, Lee PL, Yeh YM, Yeh CR: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad. Proc Natl Acad Sci U S A. 2008, 105: 3927-3932. 10.1073/pnas.0712353105PubMedCentralCrossRef Chang SF, Chang CA, Lee DY, Lee PL, Yeh YM, Yeh CR: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad. Proc Natl Acad Sci U S A. 2008, 105: 3927-3932. 10.1073/pnas.0712353105PubMedCentralCrossRef
52.
go back to reference Robertson BW, Bonsal L, Chellaiah MA: Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Mol Cancer. 2010, 9: 260- 10.1186/1476-4598-9-260PubMedCentralCrossRef Robertson BW, Bonsal L, Chellaiah MA: Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Mol Cancer. 2010, 9: 260- 10.1186/1476-4598-9-260PubMedCentralCrossRef
53.
go back to reference Yeung F, Law WK, Yeh CH, Westendorf JJ, Zhang Y, Wang R: Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem. 2002, 277: 2468-2476. 10.1074/jbc.M105947200CrossRef Yeung F, Law WK, Yeh CH, Westendorf JJ, Zhang Y, Wang R: Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem. 2002, 277: 2468-2476. 10.1074/jbc.M105947200CrossRef
54.
go back to reference Robertson BW, Chellaiah MA: Osteopontin induces beta-catenin signaling through activation of Akt in prostate cancer cells. Exp Cell Res. 2010, 316: 1-11. 10.1016/j.yexcr.2009.10.012PubMedCentralCrossRef Robertson BW, Chellaiah MA: Osteopontin induces beta-catenin signaling through activation of Akt in prostate cancer cells. Exp Cell Res. 2010, 316: 1-11. 10.1016/j.yexcr.2009.10.012PubMedCentralCrossRef
55.
go back to reference van der Deen M, Akech J, Wang T, FitzGerald TJ, Altieri DC, Languino LR: The cancer-related Runx2 protein enhances cell growth and responses to androgen and TGFbeta in prostate cancer cells. J Cell Biochem. 2010, 109: 828-837.PubMedCentral van der Deen M, Akech J, Wang T, FitzGerald TJ, Altieri DC, Languino LR: The cancer-related Runx2 protein enhances cell growth and responses to androgen and TGFbeta in prostate cancer cells. J Cell Biochem. 2010, 109: 828-837.PubMedCentral
56.
go back to reference Fowler M, Borazanci E, McGhee L, Pylant SW, Williams BJ, Glass J: RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. J Cell Biochem. 2006, 97: 1-17. 10.1002/jcb.20664CrossRef Fowler M, Borazanci E, McGhee L, Pylant SW, Williams BJ, Glass J: RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. J Cell Biochem. 2006, 97: 1-17. 10.1002/jcb.20664CrossRef
57.
go back to reference Chua CW, Chiu YT, Yuen HF, Chan KW, Man K, Wang X: Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res. 2009, 15: 4322-4335. 10.1158/1078-0432.CCR-08-3157CrossRef Chua CW, Chiu YT, Yuen HF, Chan KW, Man K, Wang X: Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res. 2009, 15: 4322-4335. 10.1158/1078-0432.CCR-08-3157CrossRef
58.
go back to reference Afzal F, Pratap J, Ito K, Ito Y, Stein JL, van Wijnen AJ: Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol. 2005, 204: 63-72. 10.1002/jcp.20258CrossRef Afzal F, Pratap J, Ito K, Ito Y, Stein JL, van Wijnen AJ: Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol. 2005, 204: 63-72. 10.1002/jcp.20258CrossRef
59.
go back to reference Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Stein GS, Lian JB: Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci U S A. 2002, 99: 8048-8053. 10.1073/pnas.112664499PubMedCentralCrossRef Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Stein GS, Lian JB: Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci U S A. 2002, 99: 8048-8053. 10.1073/pnas.112664499PubMedCentralCrossRef
60.
go back to reference Lee KS, Hong SH, Bae SC: Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002, 21: 7156-7163. 10.1038/sj.onc.1205937CrossRef Lee KS, Hong SH, Bae SC: Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002, 21: 7156-7163. 10.1038/sj.onc.1205937CrossRef
61.
go back to reference Selvamurugan N, Kwok S, Partridge NC: Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem. 2004, 279: 27764-27773. 10.1074/jbc.M312870200CrossRef Selvamurugan N, Kwok S, Partridge NC: Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem. 2004, 279: 27764-27773. 10.1074/jbc.M312870200CrossRef
62.
go back to reference Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Lian JV, Drissi H: Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am. 2001, 83-A (Suppl 1): S15-S22. Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Lian JV, Drissi H: Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am. 2001, 83-A (Suppl 1): S15-S22.
63.
go back to reference Hjelmeland AB, Schilling SH, Guo X, Quarles D, Wang XF: Loss of Smad3-mediated negative regulation of Runx2 activity leads to an alteration in cell fate determination. Mol Cell Biol. 2005, 25: 9460-9468. 10.1128/MCB.25.21.9460-9468.2005PubMedCentralCrossRef Hjelmeland AB, Schilling SH, Guo X, Quarles D, Wang XF: Loss of Smad3-mediated negative regulation of Runx2 activity leads to an alteration in cell fate determination. Mol Cell Biol. 2005, 25: 9460-9468. 10.1128/MCB.25.21.9460-9468.2005PubMedCentralCrossRef
64.
go back to reference Ohyama Y, Tanaka T, Shimizu T, Matsui H, Sato H, Koitabashi N: Runx2/Smad3 complex negatively regulates TGF-beta-induced connective tissue growth factor gene expression in vascular smooth muscle cells. J Atheroscler Thromb. 2012, 19: 23-35. 10.5551/jat.9753CrossRef Ohyama Y, Tanaka T, Shimizu T, Matsui H, Sato H, Koitabashi N: Runx2/Smad3 complex negatively regulates TGF-beta-induced connective tissue growth factor gene expression in vascular smooth muscle cells. J Atheroscler Thromb. 2012, 19: 23-35. 10.5551/jat.9753CrossRef
65.
go back to reference Tanikawa R, Tanikawa T, Hirashima M, Yamauchi A, Tanaka Y: Galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway. Biochem Biophys Res Commun. 2010, 394: 317-322. 10.1016/j.bbrc.2010.02.175CrossRef Tanikawa R, Tanikawa T, Hirashima M, Yamauchi A, Tanaka Y: Galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway. Biochem Biophys Res Commun. 2010, 394: 317-322. 10.1016/j.bbrc.2010.02.175CrossRef
66.
go back to reference Wang CY, Lee LH: Mutagenicity and antibacterial activity of hydroxamic acids. Antimicrob Agents Chemother. 1977, 11: 753- 10.1128/AAC.11.4.753PubMedCentralCrossRef Wang CY, Lee LH: Mutagenicity and antibacterial activity of hydroxamic acids. Antimicrob Agents Chemother. 1977, 11: 753- 10.1128/AAC.11.4.753PubMedCentralCrossRef
67.
go back to reference Choo CK, Ling MT, Chan KW, Tsao SW, Zheng Z, Zhang D: Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames. Prostate. 1999, 40: 150-158. 10.1002/(SICI)1097-0045(19990801)40:3<150::AID-PROS2>3.0.CO;2-7CrossRef Choo CK, Ling MT, Chan KW, Tsao SW, Zheng Z, Zhang D: Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames. Prostate. 1999, 40: 150-158. 10.1002/(SICI)1097-0045(19990801)40:3<150::AID-PROS2>3.0.CO;2-7CrossRef
68.
go back to reference Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA: Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol. 2000, 148: 665-678. 10.1083/jcb.148.4.665PubMedCentralCrossRef Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA: Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol. 2000, 148: 665-678. 10.1083/jcb.148.4.665PubMedCentralCrossRef
69.
go back to reference Gupta A, Lee BS, Khadeer MA, Tang Z, Chellaiah M, Abu-Amer Y: Leupaxin is a critical adaptor protein in the adhesion zone of the osteoclast. J Bone Miner Res. 2003, 18: 669-685. 10.1359/jbmr.2003.18.4.669CrossRef Gupta A, Lee BS, Khadeer MA, Tang Z, Chellaiah M, Abu-Amer Y: Leupaxin is a critical adaptor protein in the adhesion zone of the osteoclast. J Bone Miner Res. 2003, 18: 669-685. 10.1359/jbmr.2003.18.4.669CrossRef
70.
go back to reference Desai B, Ma T, Zhu J, Chellaiah MA: Characterization of the expression of variant and standard CD44 in prostate cancer cells: identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. J Cell Biochem. 2009, 108: 272-284. 10.1002/jcb.22248CrossRef Desai B, Ma T, Zhu J, Chellaiah MA: Characterization of the expression of variant and standard CD44 in prostate cancer cells: identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. J Cell Biochem. 2009, 108: 272-284. 10.1002/jcb.22248CrossRef
71.
go back to reference Chellaiah M, Hruska KA: Osteopontin stimulates gelsolin associated phosphoinositide levels and PtdIns 3-hydroxyl kinase. Mol Biol Cell. 1996, 7: 743-753.PubMedCentralCrossRef Chellaiah M, Hruska KA: Osteopontin stimulates gelsolin associated phosphoinositide levels and PtdIns 3-hydroxyl kinase. Mol Biol Cell. 1996, 7: 743-753.PubMedCentralCrossRef
72.
go back to reference Ma T, Sadashivaiah K, Chellaiah MA: Regulation of sealing ring formation by L-plastin and cortactin in osteoclasts. J Biol Chem. 2010, 285: 29911-29924. 10.1074/jbc.M109.099697PubMedCentralCrossRef Ma T, Sadashivaiah K, Chellaiah MA: Regulation of sealing ring formation by L-plastin and cortactin in osteoclasts. J Biol Chem. 2010, 285: 29911-29924. 10.1074/jbc.M109.099697PubMedCentralCrossRef
73.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262CrossRef Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262CrossRef
74.
go back to reference Schneider A, Younis RH, Gutkind JS: Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia. 2008, 10: 1295-1302.PubMedCentralCrossRef Schneider A, Younis RH, Gutkind JS: Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia. 2008, 10: 1295-1302.PubMedCentralCrossRef
75.
go back to reference Singh IS, Gupta A, Nagarsekar A, Cooper Z, Manka C, Hester L: Heat shock co-activates interleukin-8 transcription. Am J Respir Cell Mol Biol. 2008, 39: 235-242. 10.1165/rcmb.2007-0294OCPubMedCentralCrossRef Singh IS, Gupta A, Nagarsekar A, Cooper Z, Manka C, Hester L: Heat shock co-activates interleukin-8 transcription. Am J Respir Cell Mol Biol. 2008, 39: 235-242. 10.1165/rcmb.2007-0294OCPubMedCentralCrossRef
76.
go back to reference Feng P, Li TL, Guan ZX, Franklin RB, Costello LC: Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002, 52: 311-318. 10.1002/pros.10128PubMedCentralCrossRef Feng P, Li TL, Guan ZX, Franklin RB, Costello LC: Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002, 52: 311-318. 10.1002/pros.10128PubMedCentralCrossRef
Metadata
Title
Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis
Authors
Aditi Gupta
Wei Cao
Meenakshi A Chellaiah
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-66

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine