Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152

Authors: Ho-Hyung Woo, Csaba F László, Stephen Greco, Setsuko K Chambers

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

Colony stimulating factor-1 (CSF-1) plays an important role in ovarian cancer biology and as a prognostic factor in ovarian cancer. Elevated levels of CSF-1 promote progression of ovarian cancer, by binding to CSF-1R (the tyrosine kinase receptor encoded by c-fms proto-oncogene).
Post-transcriptional regulation of CSF-1 mRNA by its 3’ untranslated region (3’UTR) has been studied previously. Several cis-acting elements in 3’UTR are involved in post-transcriptional regulation of CSF-1 mRNA. These include conserved protein-binding motifs as well as miRNA targets. miRNAs are 21-23nt single strand RNA which bind the complementary sequences in mRNAs, suppressing translation and enhancing mRNA degradation.

Results

In this report, we investigate the effect of miRNAs on post-transcriptional regulation of CSF-1 mRNA in human ovarian cancer. Bioinformatics analysis predicts at least 14 miRNAs targeting CSF-1 mRNA 3’UTR. By mutations in putative miRNA targets in CSF-1 mRNA 3’UTR, we identified a common target for both miR-128 and miR-152. We have also found that both miR-128 and miR-152 down-regulate CSF-1 mRNA and protein expression in ovarian cancer cells leading to decreased cell motility and adhesion in vitro, two major aspects of the metastatic potential of cancer cells.

Conclusion

The major CSF-1 mRNA 3’UTR contains a common miRNA target which is involved in post-transcriptional regulation of CSF-1. Our results provide the evidence for a mechanism by which miR-128 and miR-152 down-regulate CSF-1, an important regulator of ovarian cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Filderman AE, Bruckner A, Kacinski BM, Deng N, Remold HG: Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res. 1992, 52: 3661-6.PubMed Filderman AE, Bruckner A, Kacinski BM, Deng N, Remold HG: Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res. 1992, 52: 3661-6.PubMed
2.
go back to reference Ide H, Seligson DB, Memarzadeh S, Xin L, Horvath S, Dubey P, Flick MB, Kacinski BM, Palotie A, Witte ON: Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. PNAS. 2002, 99: 14404-9. 10.1073/pnas.222537099PubMedCentralCrossRefPubMed Ide H, Seligson DB, Memarzadeh S, Xin L, Horvath S, Dubey P, Flick MB, Kacinski BM, Palotie A, Witte ON: Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. PNAS. 2002, 99: 14404-9. 10.1073/pnas.222537099PubMedCentralCrossRefPubMed
3.
go back to reference Kacinski BM, Carter D, Mittal K, Yee LD, Scata KA, Donofrio L, Chambers SK, Wang KI, Yang-Feng T, Rohrschneider LR: Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990, 137: 135-47.PubMedCentralPubMed Kacinski BM, Carter D, Mittal K, Yee LD, Scata KA, Donofrio L, Chambers SK, Wang KI, Yang-Feng T, Rohrschneider LR: Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990, 137: 135-47.PubMedCentralPubMed
4.
go back to reference Kacinski BM, Scata KA, Carter D, Yee LD, Sapi E, King BL, Chambers SK, Jones MA, Pirro MH, Stanley ER: FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991, 6: 941-52.PubMed Kacinski BM, Scata KA, Carter D, Yee LD, Sapi E, King BL, Chambers SK, Jones MA, Pirro MH, Stanley ER: FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991, 6: 941-52.PubMed
5.
go back to reference Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG: Biology and action of colony–stimulating factor-1. Mol Reprod Dev. 1997, 46: 4-10. 10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-VCrossRefPubMed Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG: Biology and action of colony–stimulating factor-1. Mol Reprod Dev. 1997, 46: 4-10. 10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-VCrossRefPubMed
6.
go back to reference Teitelbaum SL, Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003, 4: 638-49. 10.1038/nrg1122CrossRefPubMed Teitelbaum SL, Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003, 4: 638-49. 10.1038/nrg1122CrossRefPubMed
7.
go back to reference Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002, 99: 111-20. 10.1182/blood.V99.1.111CrossRefPubMed Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002, 99: 111-20. 10.1182/blood.V99.1.111CrossRefPubMed
9.
go back to reference Chambers SK, Kacinski BM, Ivins CM, Carcanqiu ML: Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res. 1997, 3: 999-1007.PubMed Chambers SK, Kacinski BM, Ivins CM, Carcanqiu ML: Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res. 1997, 3: 999-1007.PubMed
10.
go back to reference Chambers SK, Wang Y, Gertz RE, Kacinski BM: Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995, 55: 1578-85.PubMed Chambers SK, Wang Y, Gertz RE, Kacinski BM: Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995, 55: 1578-85.PubMed
11.
go back to reference Toy EP, Azodi M, Folk NL, Zito CM, Zeiss CJ, Chambers SK: Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia. 2009, 11: 136-44.PubMedCentralCrossRefPubMed Toy EP, Azodi M, Folk NL, Zito CM, Zeiss CJ, Chambers SK: Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia. 2009, 11: 136-44.PubMedCentralCrossRefPubMed
12.
go back to reference Koths K: Structure-function studies on human macrophage colony-stimulating factor (M-CSF). Mol Reprod Dev. 1997, 46: 31-37. 10.1002/(SICI)1098-2795(199701)46:1<31::AID-MRD6>3.0.CO;2-SCrossRefPubMed Koths K: Structure-function studies on human macrophage colony-stimulating factor (M-CSF). Mol Reprod Dev. 1997, 46: 31-37. 10.1002/(SICI)1098-2795(199701)46:1<31::AID-MRD6>3.0.CO;2-SCrossRefPubMed
13.
go back to reference Ralph P, Warren MK, Lee MT, Csejtey J, Weaver JF, Broxmeyer HE, Williams DE, Stanley ER, Kawasaki ES: Inducible production of human macrophage growth factor, CSF-1. Blood. 1986, 68: 633-9.PubMed Ralph P, Warren MK, Lee MT, Csejtey J, Weaver JF, Broxmeyer HE, Williams DE, Stanley ER, Kawasaki ES: Inducible production of human macrophage growth factor, CSF-1. Blood. 1986, 68: 633-9.PubMed
14.
go back to reference Price LK, Choi HU, Rosenberg L, Stanley ER: The predominant form of secreted colony stimulating factor-1 is a proteoglycan. J Biol Chem. 1992, 267: 2190-2199.PubMed Price LK, Choi HU, Rosenberg L, Stanley ER: The predominant form of secreted colony stimulating factor-1 is a proteoglycan. J Biol Chem. 1992, 267: 2190-2199.PubMed
15.
go back to reference Suzu S, Ohtsuki T, Makishima M, Yanai N, Kawashima T, Nagata N, Motoyoshi K: Biological activity of a proteoglycan form of macrophage colony-stimulating factor and its binding to type V collagen. J Biol Chem. 1992, 267: 16812-16815.PubMed Suzu S, Ohtsuki T, Makishima M, Yanai N, Kawashima T, Nagata N, Motoyoshi K: Biological activity of a proteoglycan form of macrophage colony-stimulating factor and its binding to type V collagen. J Biol Chem. 1992, 267: 16812-16815.PubMed
16.
go back to reference Zhou Y, Yi X, Stoffer JNB, Bonafe N, Gilmore-Hebert M, McAlpine J, Chambers SK: The multifunctional protein glyceraldehydes-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res. 2008, 6: 1375-1384. 10.1158/1541-7786.MCR-07-2170PubMedCentralCrossRefPubMed Zhou Y, Yi X, Stoffer JNB, Bonafe N, Gilmore-Hebert M, McAlpine J, Chambers SK: The multifunctional protein glyceraldehydes-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res. 2008, 6: 1375-1384. 10.1158/1541-7786.MCR-07-2170PubMedCentralCrossRefPubMed
17.
go back to reference Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005, 6: 376-85.CrossRefPubMed Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005, 6: 376-85.CrossRefPubMed
19.
go back to reference Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005, 123: 1133-46. 10.1016/j.cell.2005.11.023CrossRefPubMed Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005, 123: 1133-46. 10.1016/j.cell.2005.11.023CrossRefPubMed
21.
go back to reference Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008, 111: 478-86. 10.1016/j.ygyno.2008.08.017CrossRefPubMed Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008, 111: 478-86. 10.1016/j.ygyno.2008.08.017CrossRefPubMed
22.
go back to reference Yang C, Cai J, Wang Q, Tang H, Cao J, Wu L, Wang Z: Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol. 2012, 124: 325-34. 10.1016/j.ygyno.2011.10.013CrossRefPubMed Yang C, Cai J, Wang Q, Tang H, Cao J, Wu L, Wang Z: Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol. 2012, 124: 325-34. 10.1016/j.ygyno.2011.10.013CrossRefPubMed
23.
go back to reference Dweep H, Sticht C, Pandey P, Gretz N: miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform. 2011, 44: 839-47. 10.1016/j.jbi.2011.05.002CrossRefPubMed Dweep H, Sticht C, Pandey P, Gretz N: miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform. 2011, 44: 839-47. 10.1016/j.jbi.2011.05.002CrossRefPubMed
24.
25.
26.
go back to reference Wang X: El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008, 24: 325-32. 10.1093/bioinformatics/btm595CrossRefPubMed Wang X: El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008, 24: 325-32. 10.1093/bioinformatics/btm595CrossRefPubMed
27.
go back to reference Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536CrossRefPubMed Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536CrossRefPubMed
28.
go back to reference Chen K, Rajewsky N: Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006, 38: 1452-6. 10.1038/ng1910CrossRefPubMed Chen K, Rajewsky N: Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006, 38: 1452-6. 10.1038/ng1910CrossRefPubMed
29.
go back to reference Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 2007, 39: 1278-1284. 10.1038/ng2135CrossRefPubMed Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 2007, 39: 1278-1284. 10.1038/ng2135CrossRefPubMed
30.
go back to reference Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217. 10.1016/j.cell.2006.07.031CrossRefPubMed Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217. 10.1016/j.cell.2006.07.031CrossRefPubMed
31.
go back to reference Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035CrossRefPubMed Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035CrossRefPubMed
32.
go back to reference Bonafe N, Gilmore-Hebert M, Folk N, Azodi M, Zhou Y, Chambers SK: Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-rich 3’ untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells: possible role in CSF-1 posttranscriptional regulation and tumor phenotype. Cancer Res. 2005, 65: 3762-3771. 10.1158/0008-5472.CAN-04-3954CrossRefPubMed Bonafe N, Gilmore-Hebert M, Folk N, Azodi M, Zhou Y, Chambers SK: Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-rich 3’ untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells: possible role in CSF-1 posttranscriptional regulation and tumor phenotype. Cancer Res. 2005, 65: 3762-3771. 10.1158/0008-5472.CAN-04-3954CrossRefPubMed
33.
go back to reference de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin O, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y: Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010, 70: 9175-84. 10.1158/0008-5472.CAN-10-1318CrossRefPubMed de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin O, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y: Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010, 70: 9175-84. 10.1158/0008-5472.CAN-10-1318CrossRefPubMed
34.
go back to reference Maroney PA, Chamnongpol S, Souret F, Nilsen TW: Direct detection of small RNAs using splinted ligation. Nat Protoc. 2008, 3: 279-87. 10.1038/nprot.2007.530CrossRefPubMed Maroney PA, Chamnongpol S, Souret F, Nilsen TW: Direct detection of small RNAs using splinted ligation. Nat Protoc. 2008, 3: 279-87. 10.1038/nprot.2007.530CrossRefPubMed
35.
go back to reference Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG: Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005, 21: 1469-77. 10.1111/j.1460-9568.2005.03978.xCrossRefPubMed Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG: Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005, 21: 1469-77. 10.1111/j.1460-9568.2005.03978.xCrossRefPubMed
36.
go back to reference Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008, 68: 9125-30. 10.1158/0008-5472.CAN-08-2629CrossRefPubMed Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008, 68: 9125-30. 10.1158/0008-5472.CAN-08-2629CrossRefPubMed
37.
go back to reference Huang J, Wang Y, Guo Y, Sun S: Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2001, 52: 60-70.CrossRef Huang J, Wang Y, Guo Y, Sun S: Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2001, 52: 60-70.CrossRef
38.
go back to reference Lui WO, Pourmand N, Patterson BK, Fire A: Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 2007, 67: 6031-43. 10.1158/0008-5472.CAN-06-0561CrossRefPubMed Lui WO, Pourmand N, Patterson BK, Fire A: Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 2007, 67: 6031-43. 10.1158/0008-5472.CAN-06-0561CrossRefPubMed
39.
go back to reference Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL: MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res. 2010, 70: 7874-81. 10.1158/0008-5472.CAN-10-1534PubMedCentralCrossRefPubMed Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL: MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res. 2010, 70: 7874-81. 10.1158/0008-5472.CAN-10-1534PubMedCentralCrossRefPubMed
40.
go back to reference Shtutman M, Baig M, Levina E, Hurteau G, Lim CU, Broude E, Nikiforov M, Harkins TT, Carmack CS, Ding Y, Wieland F, Buttyan R, Roninson IB: Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit ς2 renders tumor cells dependent on its paralogous gene COPZ1. PNAS. 2011, 108: 12449-54. 10.1073/pnas.1103842108PubMedCentralCrossRefPubMed Shtutman M, Baig M, Levina E, Hurteau G, Lim CU, Broude E, Nikiforov M, Harkins TT, Carmack CS, Ding Y, Wieland F, Buttyan R, Roninson IB: Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit ς2 renders tumor cells dependent on its paralogous gene COPZ1. PNAS. 2011, 108: 12449-54. 10.1073/pnas.1103842108PubMedCentralCrossRefPubMed
41.
go back to reference Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA: Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol. 2011, 8: 237-44.CrossRef Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA: Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol. 2011, 8: 237-44.CrossRef
42.
go back to reference Zhou Y, Ferguson J, Chang JT, Kluger Y: Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics. 2007, 8: 396- 10.1186/1471-2164-8-396PubMedCentralCrossRefPubMed Zhou Y, Ferguson J, Chang JT, Kluger Y: Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics. 2007, 8: 396- 10.1186/1471-2164-8-396PubMedCentralCrossRefPubMed
43.
go back to reference Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T: The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003, 5: 337-50. 10.1016/S1534-5807(03)00228-4CrossRefPubMed Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T: The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003, 5: 337-50. 10.1016/S1534-5807(03)00228-4CrossRefPubMed
44.
go back to reference Guo H, Ingolia NT, Weissman JS: Bartel D.P: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466: 835-840. 10.1038/nature09267PubMedCentralCrossRefPubMed Guo H, Ingolia NT, Weissman JS: Bartel D.P: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466: 835-840. 10.1038/nature09267PubMedCentralCrossRefPubMed
45.
go back to reference Bazzini A, Lee MT, Giraldez AJ: Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in Zebrafish. Science. 2012, 336: 233-237. 10.1126/science.1215704PubMedCentralCrossRefPubMed Bazzini A, Lee MT, Giraldez AJ: Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in Zebrafish. Science. 2012, 336: 233-237. 10.1126/science.1215704PubMedCentralCrossRefPubMed
46.
go back to reference Djuranovic S, Nahvi A, Green R: miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012, 336: 237-240. 10.1126/science.1215691PubMedCentralCrossRefPubMed Djuranovic S, Nahvi A, Green R: miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012, 336: 237-240. 10.1126/science.1215691PubMedCentralCrossRefPubMed
47.
go back to reference Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews: Genetics. 2011, 12: 99-110. 10.1038/nrg2936CrossRefPubMed Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews: Genetics. 2011, 12: 99-110. 10.1038/nrg2936CrossRefPubMed
48.
go back to reference Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33: e179- 10.1093/nar/gni178PubMedCentralCrossRefPubMed Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33: e179- 10.1093/nar/gni178PubMedCentralCrossRefPubMed
49.
go back to reference Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nature Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.CrossRef Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nature Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.CrossRef
Metadata
Title
Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152
Authors
Ho-Hyung Woo
Csaba F László
Stephen Greco
Setsuko K Chambers
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-58

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine