Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin

Authors: Céline Jacquemont, Julian A Simon, Alan D D'Andrea, Toshiyasu Taniguchi

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

Platinum compounds such as cisplatin and carboplatin are DNA crosslinking agents widely used for cancer chemotherapy. However, the effectiveness of platinum compounds is often tempered by the acquisition of cellular drug resistance. Until now, no pharmacological approach has successfully overcome cisplatin resistance in cancer treatment. Since the Fanconi anemia (FA) pathway is a DNA damage response pathway required for cellular resistance to DNA interstrand crosslinking agents, identification of small molecules that inhibit the FA pathway may reveal classes of chemicals that sensitize cancer cells to cisplatin.

Results

Through a cell-based screening assay of over 16,000 chemicals, we identified 26 small molecules that inhibit ionizing radiation and cisplatin-induced FANCD2 foci formation, a marker of FA pathway activity, in multiple human cell lines. Most of these small molecules also compromised ionizing radiation-induced RAD51 foci formation and homologous recombination repair, indicating that they are not selective toward the regulation of FANCD2. These compounds include known inhibitors of the proteasome, cathepsin B, lysosome, CHK1, HSP90, CDK and PKC, and several uncharacterized chemicals including a novel proteasome inhibitor (Chembridge compound 5929407).
Isobologram analyses demonstrated that half of the identified molecules sensitized ovarian cancer cells to cisplatin. Among them, 9 demonstrated increased efficiency toward FA pathway-proficient, cisplatin-resistant ovarian cancer cells. Six small molecules, including bortezomib (proteasome inhibitor), CA-074-Me (cathepsin B inhibitor) and 17-AAG (HSP90 inhibitor), synergized with cisplatin specifically in FA-proficient ovarian cancer cells (2008 + FANCF), but not in FA-deficient isogenic cells (2008). In addition, geldanamycin (HSP90 inhibitor) and two CHK1 inhibitors (UCN-01 and SB218078) exhibited a significantly stronger synergism with cisplatin in FA-proficient cells when compared to FA-deficient cells, suggesting a contribution of their FA pathway inhibitory activity to cisplatin sensitization.

Conclusion

Our findings suggest that, despite their lack of specificity, pharmaceutical inhibition of the FA pathway by bortezomib, CA-074-Me, CHK1 inhibitors or HSP90 inhibitors may be a promising strategy to sensitize cisplatin-resistant, FA pathway-proficient tumor cells to cisplatin. In addition, we identified four new small molecules which synergize with cisplatin. Further development of their analogs and evaluation of their combination with cisplatin may lead to the development of efficient cancer treatments.
Appendix
Available only for authorised users
Literature
2.
go back to reference Rabik CA, Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Canc Treat Rev. 2007, 33: 9-23. 10.1016/j.ctrv.2006.09.006CrossRef Rabik CA, Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Canc Treat Rev. 2007, 33: 9-23. 10.1016/j.ctrv.2006.09.006CrossRef
3.
go back to reference Dhillon KK, Swisher EM, Taniguchi T: Secondary mutations of BRCA1/2 and drug resistance. Canc Sci. 2011, 102: 663-669. 10.1111/j.1349-7006.2010.01840.xCrossRef Dhillon KK, Swisher EM, Taniguchi T: Secondary mutations of BRCA1/2 and drug resistance. Canc Sci. 2011, 102: 663-669. 10.1111/j.1349-7006.2010.01840.xCrossRef
5.
6.
go back to reference Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AW: SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011, 43: 138-141. 10.1038/ng.751CrossRefPubMed Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AW: SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011, 43: 138-141. 10.1038/ng.751CrossRefPubMed
7.
go back to reference Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A: Mutations of the SLX4 gene in Fanconi anemia. Nat Genet. 2011, 43: 142-146. 10.1038/ng.750PubMedCentralCrossRefPubMed Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A: Mutations of the SLX4 gene in Fanconi anemia. Nat Genet. 2011, 43: 142-146. 10.1038/ng.750PubMedCentralCrossRefPubMed
8.
go back to reference Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001, 7: 249-262. 10.1016/S1097-2765(01)00173-3CrossRefPubMed Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001, 7: 249-262. 10.1016/S1097-2765(01)00173-3CrossRefPubMed
9.
go back to reference Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R: The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005, 17: 331-339. 10.1016/j.molcel.2005.01.008CrossRefPubMed Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R: The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005, 17: 331-339. 10.1016/j.molcel.2005.01.008CrossRefPubMed
10.
go back to reference Jacquemont C, Taniguchi T: Disruption of the Fanconi anemia pathway in human cancer in the general population. Canc Biol Ther. 2006, 5: 1637-1639. 10.4161/cbt.5.12.3658CrossRef Jacquemont C, Taniguchi T: Disruption of the Fanconi anemia pathway in human cancer in the general population. Canc Biol Ther. 2006, 5: 1637-1639. 10.4161/cbt.5.12.3658CrossRef
11.
go back to reference Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, Mok SC, D'Andrea AD: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003, 9: 568-574. 10.1038/nm852CrossRefPubMed Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, Mok SC, D'Andrea AD: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003, 9: 568-574. 10.1038/nm852CrossRefPubMed
12.
go back to reference Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008, 451: 1116-1120. 10.1038/nature06633PubMedCentralCrossRefPubMed Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008, 451: 1116-1120. 10.1038/nature06633PubMedCentralCrossRefPubMed
13.
go back to reference Chirnomas D, Taniguchi T, de la Vega M, Vaidya AP, Vasserman M, Hartman AR, Kennedy R, Foster R, Mahoney J, Seiden MV, D'Andrea AD: Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther. 2006, 5: 952-961. 10.1158/1535-7163.MCT-05-0493CrossRefPubMed Chirnomas D, Taniguchi T, de la Vega M, Vaidya AP, Vasserman M, Hartman AR, Kennedy R, Foster R, Mahoney J, Seiden MV, D'Andrea AD: Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther. 2006, 5: 952-961. 10.1158/1535-7163.MCT-05-0493CrossRefPubMed
14.
go back to reference Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, Snyder JP, Hoatlin ME: Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Canc. 2009, 8: 133 10.1186/1476-4598-8-133CrossRef Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, Snyder JP, Hoatlin ME: Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Canc. 2009, 8: 133 10.1186/1476-4598-8-133CrossRef
15.
go back to reference Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME: A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway. Int J Cancer. 2009, 124: 783-792. 10.1002/ijc.24039CrossRefPubMed Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME: A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway. Int J Cancer. 2009, 124: 783-792. 10.1002/ijc.24039CrossRefPubMed
16.
go back to reference Kee Y, Huang M, Chang S, Moreau L, Park E, Smith PG, D'Andrea AD: Inhibition of the Nedd8 system sensitizes cells to DNA Interstrand crosslinking agents. Mol Cancer Res. 2012, 10: 369-377. 10.1158/1541-7786.MCR-11-0497PubMedCentralCrossRefPubMed Kee Y, Huang M, Chang S, Moreau L, Park E, Smith PG, D'Andrea AD: Inhibition of the Nedd8 system sensitizes cells to DNA Interstrand crosslinking agents. Mol Cancer Res. 2012, 10: 369-377. 10.1158/1541-7786.MCR-11-0497PubMedCentralCrossRefPubMed
17.
go back to reference Jana NR, Dikshit P, Goswami A, Nukina N: Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem. 2004, 279: 11680-11685. 10.1074/jbc.M310369200CrossRefPubMed Jana NR, Dikshit P, Goswami A, Nukina N: Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem. 2004, 279: 11680-11685. 10.1074/jbc.M310369200CrossRefPubMed
18.
go back to reference Jacquemont C, Taniguchi T: Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res. 2007, 67: 7395-7405. 10.1158/0008-5472.CAN-07-1015CrossRefPubMed Jacquemont C, Taniguchi T: Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res. 2007, 67: 7395-7405. 10.1158/0008-5472.CAN-07-1015CrossRefPubMed
19.
go back to reference Bence NF, Bennett EJ, Kopito RR: Application and Analysis of the GFP(u) Family of Ubiquitin-Proteasome System Reporters. Methods Enzymol. 2005, 399: 481-490.CrossRefPubMed Bence NF, Bennett EJ, Kopito RR: Application and Analysis of the GFP(u) Family of Ubiquitin-Proteasome System Reporters. Methods Enzymol. 2005, 399: 481-490.CrossRefPubMed
20.
go back to reference Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD, Wang ZQ, Jasin M: Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A. 2005, 102: 1110-1115. 10.1073/pnas.0407796102PubMedCentralCrossRefPubMed Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD, Wang ZQ, Jasin M: Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A. 2005, 102: 1110-1115. 10.1073/pnas.0407796102PubMedCentralCrossRefPubMed
21.
go back to reference Pierce AJ, Johnson RD, Thompson LH, Jasin M: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999, 13: 2633-2638. 10.1101/gad.13.20.2633PubMedCentralCrossRefPubMed Pierce AJ, Johnson RD, Thompson LH, Jasin M: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999, 13: 2633-2638. 10.1101/gad.13.20.2633PubMedCentralCrossRefPubMed
22.
go back to reference Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD: S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood. 2002, 100: 2414-2420. 10.1182/blood-2002-01-0278CrossRefPubMed Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD: S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood. 2002, 100: 2414-2420. 10.1182/blood-2002-01-0278CrossRefPubMed
23.
go back to reference Moynahan ME, Chiu JW, Koller BH, Jasin M: Brca1 controls homology-directed DNA repair. Mol Cell. 1999, 4: 511-518. 10.1016/S1097-2765(00)80202-6CrossRefPubMed Moynahan ME, Chiu JW, Koller BH, Jasin M: Brca1 controls homology-directed DNA repair. Mol Cell. 1999, 4: 511-518. 10.1016/S1097-2765(00)80202-6CrossRefPubMed
24.
go back to reference Shinohara A, Ogawa H, Ogawa T: Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992, 69: 457-470. 10.1016/0092-8674(92)90447-KCrossRefPubMed Shinohara A, Ogawa H, Ogawa T: Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992, 69: 457-470. 10.1016/0092-8674(92)90447-KCrossRefPubMed
25.
go back to reference Andrews PA, Albright KD: Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res. 1992, 52: 1895-1901.PubMed Andrews PA, Albright KD: Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res. 1992, 52: 1895-1901.PubMed
26.
go back to reference Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006, 58: 621-681. 10.1124/pr.58.3.10CrossRefPubMed Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006, 58: 621-681. 10.1124/pr.58.3.10CrossRefPubMed
27.
go back to reference Murakawa Y, Sonoda E, Barber LJ, Zeng W, Yokomori K, Kimura H, Niimi A, Lehmann A, Zhao GY, Hochegger H: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res. 2007, 67: 8536-8543. 10.1158/0008-5472.CAN-07-1166CrossRefPubMed Murakawa Y, Sonoda E, Barber LJ, Zeng W, Yokomori K, Kimura H, Niimi A, Lehmann A, Zhao GY, Hochegger H: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res. 2007, 67: 8536-8543. 10.1158/0008-5472.CAN-07-1166CrossRefPubMed
28.
go back to reference Guervilly JH, Mace-Aime G, Rosselli F: Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia. Hum Mol Genet. 2008, 17: 679-689.CrossRefPubMed Guervilly JH, Mace-Aime G, Rosselli F: Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia. Hum Mol Genet. 2008, 17: 679-689.CrossRefPubMed
29.
go back to reference Wang X, Kennedy RD, Ray K, Stuckert P, Ellenberger T, D'Andrea AD: Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2007, 27: 3098-3108. 10.1128/MCB.02357-06PubMedCentralCrossRefPubMed Wang X, Kennedy RD, Ray K, Stuckert P, Ellenberger T, D'Andrea AD: Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2007, 27: 3098-3108. 10.1128/MCB.02357-06PubMedCentralCrossRefPubMed
30.
go back to reference Andreassen PR, D'Andrea AD, Taniguchi T: ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004, 18: 1958-1963. 10.1101/gad.1196104PubMedCentralCrossRefPubMed Andreassen PR, D'Andrea AD, Taniguchi T: ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004, 18: 1958-1963. 10.1101/gad.1196104PubMedCentralCrossRefPubMed
31.
go back to reference Pichierri P, Rosselli F: The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004, 23: 1178-1187. 10.1038/sj.emboj.7600113PubMedCentralCrossRefPubMed Pichierri P, Rosselli F: The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004, 23: 1178-1187. 10.1038/sj.emboj.7600113PubMedCentralCrossRefPubMed
32.
go back to reference Sleeth KM, Sorensen CS, Issaeva N, Dziegielewski J, Bartek J, Helleday T: RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells. J Mol Biol. 2007, 373: 38-47. 10.1016/j.jmb.2007.07.068CrossRefPubMed Sleeth KM, Sorensen CS, Issaeva N, Dziegielewski J, Bartek J, Helleday T: RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells. J Mol Biol. 2007, 373: 38-47. 10.1016/j.jmb.2007.07.068CrossRefPubMed
33.
go back to reference Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T: Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood. 2007, 109: 5016-5026. 10.1182/blood-2006-08-038638CrossRefPubMed Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T: Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood. 2007, 109: 5016-5026. 10.1182/blood-2006-08-038638CrossRefPubMed
34.
go back to reference Noguchi S: Predictive factors for response to docetaxel in human breast cancers. Canc Sci. 2006, 97: 813-820. 10.1111/j.1349-7006.2006.00265.xCrossRef Noguchi S: Predictive factors for response to docetaxel in human breast cancers. Canc Sci. 2006, 97: 813-820. 10.1111/j.1349-7006.2006.00265.xCrossRef
35.
go back to reference Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM: Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem. 2003, 278: 52572-52577. 10.1074/jbc.M309054200CrossRefPubMed Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM: Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem. 2003, 278: 52572-52577. 10.1074/jbc.M309054200CrossRefPubMed
36.
go back to reference Maude SL, Enders GH: Cdk inhibition in human cells compromises chk1 function and activates a DNA damage response. Cancer Res. 2005, 65: 780-786.PubMed Maude SL, Enders GH: Cdk inhibition in human cells compromises chk1 function and activates a DNA damage response. Cancer Res. 2005, 65: 780-786.PubMed
37.
go back to reference Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC: CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005, 434: 598-604. 10.1038/nature03404CrossRefPubMed Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC: CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005, 434: 598-604. 10.1038/nature03404CrossRefPubMed
38.
go back to reference Levesque AA, Kohn EA, Bresnick E, Eastman A: Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damage-induced arrest at S and G2 cell cycle checkpoints. Oncogene. 2005, 24: 3786-3796. 10.1038/sj.onc.1208451CrossRefPubMed Levesque AA, Kohn EA, Bresnick E, Eastman A: Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damage-induced arrest at S and G2 cell cycle checkpoints. Oncogene. 2005, 24: 3786-3796. 10.1038/sj.onc.1208451CrossRefPubMed
39.
go back to reference Perez RP, Lewis LD, Beelen AP, Olszanski AJ, Johnston N, Rhodes CH, Beaulieu B, Ernstoff MS, Eastman A: Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the Chk1 inhibitor UCN-01 (NSC 638850). Clin Cancer Res. 2006, 12: 7079-7085. 10.1158/1078-0432.CCR-06-0197CrossRefPubMed Perez RP, Lewis LD, Beelen AP, Olszanski AJ, Johnston N, Rhodes CH, Beaulieu B, Ernstoff MS, Eastman A: Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the Chk1 inhibitor UCN-01 (NSC 638850). Clin Cancer Res. 2006, 12: 7079-7085. 10.1158/1078-0432.CCR-06-0197CrossRefPubMed
40.
go back to reference Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O'Connor PM: UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Canc Inst. 1996, 88: 956-965. 10.1093/jnci/88.14.956CrossRef Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O'Connor PM: UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Canc Inst. 1996, 88: 956-965. 10.1093/jnci/88.14.956CrossRef
41.
go back to reference Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17: 88-96. 10.1016/j.molmed.2010.10.009CrossRefPubMed Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17: 88-96. 10.1016/j.molmed.2010.10.009CrossRefPubMed
42.
go back to reference Chen CC, Kennedy RD, Sidi S, Look AT, D'Andrea AD: CHK1 inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway deficient tumors. Mol Canc. 2009, 8: 24 10.1186/1476-4598-8-24CrossRef Chen CC, Kennedy RD, Sidi S, Look AT, D'Andrea AD: CHK1 inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway deficient tumors. Mol Canc. 2009, 8: 24 10.1186/1476-4598-8-24CrossRef
43.
go back to reference Tse AN, Sheikh TN, Alan H, Chou TC, Schwartz GK: 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol Pharmacol. 2009, 75: 124-133. 10.1124/mol.108.050807PubMedCentralCrossRefPubMed Tse AN, Sheikh TN, Alan H, Chou TC, Schwartz GK: 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol Pharmacol. 2009, 75: 124-133. 10.1124/mol.108.050807PubMedCentralCrossRefPubMed
44.
go back to reference McCollum AK, Lukasiewicz KB, Teneyck CJ, Lingle WL, Toft DO, Erlichman C: Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther. 2008, 7: 3256-3264. 10.1158/1535-7163.MCT-08-0157PubMedCentralCrossRefPubMed McCollum AK, Lukasiewicz KB, Teneyck CJ, Lingle WL, Toft DO, Erlichman C: Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther. 2008, 7: 3256-3264. 10.1158/1535-7163.MCT-08-0157PubMedCentralCrossRefPubMed
45.
go back to reference Hubbard J, Erlichman C, Toft DO, Qin R, Stensgard BA, Felten S, Ten Eyck C, Batzel G, Ivy SP, Haluska P: Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Investig New Drugs. 2011, 29: 473-480. 10.1007/s10637-009-9381-yCrossRef Hubbard J, Erlichman C, Toft DO, Qin R, Stensgard BA, Felten S, Ten Eyck C, Batzel G, Ivy SP, Haluska P: Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Investig New Drugs. 2011, 29: 473-480. 10.1007/s10637-009-9381-yCrossRef
46.
go back to reference Kling J: New twists on proteasome inhibitors. Nat Biotechnol. 2010, 28: 1236-1238. 10.1038/nbt.1727CrossRefPubMed Kling J: New twists on proteasome inhibitors. Nat Biotechnol. 2010, 28: 1236-1238. 10.1038/nbt.1727CrossRefPubMed
47.
go back to reference Solomon VR, Lee H: Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009, 625: 220-233. 10.1016/j.ejphar.2009.06.063CrossRefPubMed Solomon VR, Lee H: Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009, 625: 220-233. 10.1016/j.ejphar.2009.06.063CrossRefPubMed
48.
go back to reference Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D'Andrea AD: Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest. 2007, 117: 1440-1449. 10.1172/JCI31245PubMedCentralCrossRefPubMed Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D'Andrea AD: Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest. 2007, 117: 1440-1449. 10.1172/JCI31245PubMedCentralCrossRefPubMed
49.
go back to reference Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M: Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol. 2006, 409: 524-540.PubMedCentralCrossRefPubMed Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M: Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol. 2006, 409: 524-540.PubMedCentralCrossRefPubMed
50.
go back to reference Richardson C, Moynahan ME, Jasin M: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998, 12: 3831-3842. 10.1101/gad.12.24.3831PubMedCentralCrossRefPubMed Richardson C, Moynahan ME, Jasin M: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998, 12: 3831-3842. 10.1101/gad.12.24.3831PubMedCentralCrossRefPubMed
51.
go back to reference Elliott PJ, Soucy TA, Pien CS, Adams J, Lightcap ES: Assays for proteasome inhibition. Meth Mol Med. 2003, 85: 163-172. Elliott PJ, Soucy TA, Pien CS, Adams J, Lightcap ES: Assays for proteasome inhibition. Meth Mol Med. 2003, 85: 163-172.
52.
go back to reference Tsai CM, Gazdar AF, Venzon DJ, Steinberg SM, Dedrick RL, Mulshine JL, Kramer BS: Lack of in vitro synergy between etoposide and cis-diamminedichloroplatinum(II). Cancer Res. 1989, 49: 2390-2397.PubMed Tsai CM, Gazdar AF, Venzon DJ, Steinberg SM, Dedrick RL, Mulshine JL, Kramer BS: Lack of in vitro synergy between etoposide and cis-diamminedichloroplatinum(II). Cancer Res. 1989, 49: 2390-2397.PubMed
Metadata
Title
Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin
Authors
Céline Jacquemont
Julian A Simon
Alan D D'Andrea
Toshiyasu Taniguchi
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-26

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine