Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Research

Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly

Authors: Praveen Rajendran, Barbara Delage, W Mohaiza Dashwood, Tian-Wei Yu, Bradyn Wuth, David E Williams, Emily Ho, Roderick H Dashwood

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

Background

Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN), an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells.

Results

Cells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT) was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1). Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest.

Conclusion

The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor complex and enhanced binding of HDAC3 to 14-3-3 or Pin1. In the cytoplasm, release of HDAC3 from 14-3-3 followed by nuclear import is postulated to compete with a Pin1 pathway that directs HDAC3 for degradation. The latter pathway predominates in colon cancer cells exposed continuously to SFN, whereas the former pathway is likely to be favored when SFN has been removed within 24 h, allowing recovery from cell cycle arrest.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chi P, Allis CD, Wang GG: Covalent histone modifications - miswritten, misinterpretation and mis-erased in human cancer. Nat Rev Cancer. 2010, 10: 457-469. 10.1038/nrc2876PubMedCentralCrossRefPubMed Chi P, Allis CD, Wang GG: Covalent histone modifications - miswritten, misinterpretation and mis-erased in human cancer. Nat Rev Cancer. 2010, 10: 457-469. 10.1038/nrc2876PubMedCentralCrossRefPubMed
3.
go back to reference Poke FS, Qadi A, Holloway AF: Reversing aberrant methylation patterns in cancer. Curr Med Chem. 2010, 17: 1246-1254. 10.2174/092986710790936329CrossRefPubMed Poke FS, Qadi A, Holloway AF: Reversing aberrant methylation patterns in cancer. Curr Med Chem. 2010, 17: 1246-1254. 10.2174/092986710790936329CrossRefPubMed
5.
go back to reference Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E: Epigenetics of cervical cancer: an overview and therapeutic perspectives. Mol Cancer. 2005, 4: 38- 10.1186/1476-4598-4-38PubMedCentralCrossRefPubMed Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E: Epigenetics of cervical cancer: an overview and therapeutic perspectives. Mol Cancer. 2005, 4: 38- 10.1186/1476-4598-4-38PubMedCentralCrossRefPubMed
6.
go back to reference Garske AL, Oliver SS, Wagner EK, Musselman CA, LeRoy G, Garcia BA, Kutateladze TG, Denu JM: Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol. 2010, 6: 283-290. 10.1038/nchembio.319PubMedCentralCrossRefPubMed Garske AL, Oliver SS, Wagner EK, Musselman CA, LeRoy G, Garcia BA, Kutateladze TG, Denu JM: Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol. 2010, 6: 283-290. 10.1038/nchembio.319PubMedCentralCrossRefPubMed
7.
go back to reference Buchwald M, Kramer OH, Heinzel T: HDACi - targets beyond chromatin. Cancer Lett. 2009, 280: 160-167. 10.1016/j.canlet.2009.02.028CrossRefPubMed Buchwald M, Kramer OH, Heinzel T: HDACi - targets beyond chromatin. Cancer Lett. 2009, 280: 160-167. 10.1016/j.canlet.2009.02.028CrossRefPubMed
8.
go back to reference Minucci S, Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006, 6: 38-51. 10.1038/nrc1779CrossRefPubMed Minucci S, Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006, 6: 38-51. 10.1038/nrc1779CrossRefPubMed
9.
go back to reference Müller S, Krämer OH: Inhibitors of HDACs - effective drugs against cancer?. Curr Cancer Drug Targets. 2010, 10: 210-228. 10.2174/156800910791054149CrossRefPubMed Müller S, Krämer OH: Inhibitors of HDACs - effective drugs against cancer?. Curr Cancer Drug Targets. 2010, 10: 210-228. 10.2174/156800910791054149CrossRefPubMed
10.
go back to reference Lane AA, Chabner BA: Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 2009, 27: 5459-5468. 10.1200/JCO.2009.22.1291CrossRefPubMed Lane AA, Chabner BA: Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 2009, 27: 5459-5468. 10.1200/JCO.2009.22.1291CrossRefPubMed
11.
go back to reference Lin Z, Murray PM, Ding Y, Denny WA, Ferguson LR: Quinazolines as novel anti-inflammatory histone deacetylase inhibitors. Mutat Res. 2010, 690: 81-88.CrossRefPubMed Lin Z, Murray PM, Ding Y, Denny WA, Ferguson LR: Quinazolines as novel anti-inflammatory histone deacetylase inhibitors. Mutat Res. 2010, 690: 81-88.CrossRefPubMed
12.
go back to reference Ma X, Ezzeldin HH, Diasio RB: Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs. 2009, 69: 1911-1934. 10.2165/11315680-000000000-00000CrossRefPubMed Ma X, Ezzeldin HH, Diasio RB: Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs. 2009, 69: 1911-1934. 10.2165/11315680-000000000-00000CrossRefPubMed
13.
go back to reference Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC, Hooi SC: Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 2005, 12: 395-404. 10.1038/sj.cdd.4401567CrossRefPubMed Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC, Hooi SC: Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 2005, 12: 395-404. 10.1038/sj.cdd.4401567CrossRefPubMed
14.
go back to reference Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM: Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006, 281: 13548-13558. 10.1074/jbc.M510023200CrossRefPubMed Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM: Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006, 281: 13548-13558. 10.1074/jbc.M510023200CrossRefPubMed
15.
go back to reference Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M: Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004, 5: 455-463. 10.1016/S1535-6108(04)00114-XCrossRefPubMed Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M: Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004, 5: 455-463. 10.1016/S1535-6108(04)00114-XCrossRefPubMed
16.
go back to reference Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW, Giardina C: HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog. 2007, 47: 137-147.CrossRef Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW, Giardina C: HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog. 2007, 47: 137-147.CrossRef
17.
go back to reference Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takikto M, Hewitt S, Lee EL, Dashwood RH, Smoot D: Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci. 2009, 54: 2109-2117. 10.1007/s10620-008-0601-7PubMedCentralCrossRefPubMed Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takikto M, Hewitt S, Lee EL, Dashwood RH, Smoot D: Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci. 2009, 54: 2109-2117. 10.1007/s10620-008-0601-7PubMedCentralCrossRefPubMed
18.
go back to reference Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D, Figueroa M, Melnick A, Kao GD, Augenlicht LH, Mariadason JM: HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell. 2008, 19: 4062-4075. 10.1091/mbc.E08-02-0139PubMedCentralCrossRefPubMed Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D, Figueroa M, Melnick A, Kao GD, Augenlicht LH, Mariadason JM: HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell. 2008, 19: 4062-4075. 10.1091/mbc.E08-02-0139PubMedCentralCrossRefPubMed
19.
go back to reference Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, Bernard L, Draetta GF, Alcalay M, Seiser C: Role for histone deacetylase 1 in human tumor proliferation. Mol Cell Biol. 2007, 27: 4784-4795. 10.1128/MCB.00494-07PubMedCentralCrossRefPubMed Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, Bernard L, Draetta GF, Alcalay M, Seiser C: Role for histone deacetylase 1 in human tumor proliferation. Mol Cell Biol. 2007, 27: 4784-4795. 10.1128/MCB.00494-07PubMedCentralCrossRefPubMed
20.
go back to reference Ma H, Nguyen C, Lee KS, Kahn M: Differential roles for the coactivators CBP and p300 on TCF/β-catenin-mediated survivin gene expression. Oncogene. 2005, 24: 3619-3631. 10.1038/sj.onc.1208433CrossRefPubMed Ma H, Nguyen C, Lee KS, Kahn M: Differential roles for the coactivators CBP and p300 on TCF/β-catenin-mediated survivin gene expression. Oncogene. 2005, 24: 3619-3631. 10.1038/sj.onc.1208433CrossRefPubMed
21.
go back to reference Dashwood RH, Ho E: Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol. 2007, 17: 363-369. 10.1016/j.semcancer.2007.04.001PubMedCentralCrossRefPubMed Dashwood RH, Ho E: Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol. 2007, 17: 363-369. 10.1016/j.semcancer.2007.04.001PubMedCentralCrossRefPubMed
22.
go back to reference Davis CD, Ross SA: Dietary components impact histone modifications and cancer risk. Nutr Rev. 2007, 65: 88-94.CrossRefPubMed Davis CD, Ross SA: Dietary components impact histone modifications and cancer risk. Nutr Rev. 2007, 65: 88-94.CrossRefPubMed
23.
go back to reference Rajendran P, Williams DE, Ho E, Dashwood RH: Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol. 2011, 46: 181-199. 10.3109/10409238.2011.557713PubMedCentralCrossRefPubMed Rajendran P, Williams DE, Ho E, Dashwood RH: Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol. 2011, 46: 181-199. 10.3109/10409238.2011.557713PubMedCentralCrossRefPubMed
24.
go back to reference Fahey JW, Zhang Y, Talalay P: Broccoli sprouts: and exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA. 1997, 94: 10367-10372. 10.1073/pnas.94.19.10367PubMedCentralCrossRefPubMed Fahey JW, Zhang Y, Talalay P: Broccoli sprouts: and exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA. 1997, 94: 10367-10372. 10.1073/pnas.94.19.10367PubMedCentralCrossRefPubMed
25.
go back to reference Jeffery EH, Keck AS: Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol Nutr Food Res. 2008, 52 (Suppl 1): S7-S17.PubMed Jeffery EH, Keck AS: Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol Nutr Food Res. 2008, 52 (Suppl 1): S7-S17.PubMed
26.
go back to reference Lai RH, Keck AS, Wallig MA, West LG, Jeffery EH: Evaluation of the safety and bioactivity of purified and semi-purified glucoraphanin. Food Chem Toxicol. 2008, 46: 195-202. 10.1016/j.fct.2007.07.015CrossRefPubMed Lai RH, Keck AS, Wallig MA, West LG, Jeffery EH: Evaluation of the safety and bioactivity of purified and semi-purified glucoraphanin. Food Chem Toxicol. 2008, 46: 195-202. 10.1016/j.fct.2007.07.015CrossRefPubMed
27.
go back to reference Cheung KL, Kong AN: Molecular targets of dietary phenyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010, 12: 87-97. 10.1208/s12248-009-9162-8PubMedCentralCrossRefPubMed Cheung KL, Kong AN: Molecular targets of dietary phenyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010, 12: 87-97. 10.1208/s12248-009-9162-8PubMedCentralCrossRefPubMed
28.
go back to reference Traka MH, Spinks CA, Doleman JF, Melchini A, Ball RY, Mills RD, Mithen RF: The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Mol Cancer. 2010, 9: 189- 10.1186/1476-4598-9-189PubMedCentralCrossRefPubMed Traka MH, Spinks CA, Doleman JF, Melchini A, Ball RY, Mills RD, Mithen RF: The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Mol Cancer. 2010, 9: 189- 10.1186/1476-4598-9-189PubMedCentralCrossRefPubMed
29.
go back to reference Myzak MC, Karplus PA, Chung FL, Dashwood RH: A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004, 64: 5767-5774. 10.1158/0008-5472.CAN-04-1326CrossRefPubMed Myzak MC, Karplus PA, Chung FL, Dashwood RH: A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004, 64: 5767-5774. 10.1158/0008-5472.CAN-04-1326CrossRefPubMed
30.
go back to reference Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E: Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis. 2006, 27: 811-819.PubMedCentralCrossRefPubMed Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E: Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis. 2006, 27: 811-819.PubMedCentralCrossRefPubMed
31.
go back to reference Pledgie-Tracy A, Sobolewski MD, Davidson NE: Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther. 2007, 6: 1013-1021.CrossRefPubMed Pledgie-Tracy A, Sobolewski MD, Davidson NE: Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther. 2007, 6: 1013-1021.CrossRefPubMed
32.
go back to reference Ma X, Fang Y, Beklemisheva A, Dai W, Feng J, Ahmed T, Liu D, Chiao JW: Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatin to induce growth arrest in human leukemia cells. Int J Oncol. 2006, 28: 1287-1293.PubMed Ma X, Fang Y, Beklemisheva A, Dai W, Feng J, Ahmed T, Liu D, Chiao JW: Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatin to induce growth arrest in human leukemia cells. Int J Oncol. 2006, 28: 1287-1293.PubMed
33.
34.
go back to reference Telang U, Brazeau DA, Morris ME: Comparison of the effects of phenethyl isothiocyanate and sulforaphane on gene expression in breast cancer and normal mammary epithelial cells. Exp Bio Med. 2009, 234: 287-295.CrossRef Telang U, Brazeau DA, Morris ME: Comparison of the effects of phenethyl isothiocyanate and sulforaphane on gene expression in breast cancer and normal mammary epithelial cells. Exp Bio Med. 2009, 234: 287-295.CrossRef
35.
go back to reference Herman-Antosiewicz A, Xiao H, Lew KL, Singh SV: Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther. 2007, 6: 1673-1681. 10.1158/1535-7163.MCT-06-0807CrossRefPubMed Herman-Antosiewicz A, Xiao H, Lew KL, Singh SV: Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther. 2007, 6: 1673-1681. 10.1158/1535-7163.MCT-06-0807CrossRefPubMed
36.
go back to reference Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH: Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice. FASEB J. 2006, 20: 506-508.PubMedCentralPubMed Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH: Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice. FASEB J. 2006, 20: 506-508.PubMedCentralPubMed
37.
go back to reference Dashwood RH, Myzak MC, Ho E: Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention?. Carcinogenesis. 2006, 27: 344-349. 10.1093/carcin/bgi253CrossRefPubMed Dashwood RH, Myzak MC, Ho E: Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention?. Carcinogenesis. 2006, 27: 344-349. 10.1093/carcin/bgi253CrossRefPubMed
38.
go back to reference Singh AV, Xiao D, Lew KL, Dhir R, Singh SV: Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004, 25: 83-90.CrossRefPubMed Singh AV, Xiao D, Lew KL, Dhir R, Singh SV: Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004, 25: 83-90.CrossRefPubMed
39.
go back to reference Escaffit F, Vaute O, Chevillard-Briet M, Segui B, Takami Y, Nakayama T, Troucher D: Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression. Mol Cell Biol. 2007, 27: 554-567. 10.1128/MCB.00869-06PubMedCentralCrossRefPubMed Escaffit F, Vaute O, Chevillard-Briet M, Segui B, Takami Y, Nakayama T, Troucher D: Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression. Mol Cell Biol. 2007, 27: 554-567. 10.1128/MCB.00869-06PubMedCentralCrossRefPubMed
40.
go back to reference Scott FL, Fuchs GJ, Boyd SE, Denault JB, Hawkins CJ, Dequiedt F, Salvesen GS: Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem. 2008, 283: 19499-19510.PubMedCentralCrossRefPubMed Scott FL, Fuchs GJ, Boyd SE, Denault JB, Hawkins CJ, Dequiedt F, Salvesen GS: Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem. 2008, 283: 19499-19510.PubMedCentralCrossRefPubMed
41.
go back to reference Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP: HDAC6 is a microtubule-associated deacetylase. Nature. 2002, 417: 455-458. 10.1038/417455aCrossRefPubMed Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP: HDAC6 is a microtubule-associated deacetylase. Nature. 2002, 417: 455-458. 10.1038/417455aCrossRefPubMed
42.
go back to reference Matthias P, Yoshida M, Khochbin S: HDAC6 a new cellular stress surveillance factor. Cell Cycle. 2008, 7: 7-10.CrossRefPubMed Matthias P, Yoshida M, Khochbin S: HDAC6 a new cellular stress surveillance factor. Cell Cycle. 2008, 7: 7-10.CrossRefPubMed
43.
go back to reference Buglio D, Mamidipudi V, Khaskhely NM, Brady H, Heise C, Besterman J, Martell RE, MacBeth K, Younes A: The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism. Br J Haematol. 2010, 151: 387-396. 10.1111/j.1365-2141.2010.08342.xPubMedCentralCrossRefPubMed Buglio D, Mamidipudi V, Khaskhely NM, Brady H, Heise C, Besterman J, Martell RE, MacBeth K, Younes A: The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism. Br J Haematol. 2010, 151: 387-396. 10.1111/j.1365-2141.2010.08342.xPubMedCentralCrossRefPubMed
44.
go back to reference Jagannath S, Dimopoulos MA, Lonial S: Combined proteasome and histone deacetylase inhibition: a promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res. 2010, 34: 1111-1118. 10.1016/j.leukres.2010.04.001CrossRefPubMed Jagannath S, Dimopoulos MA, Lonial S: Combined proteasome and histone deacetylase inhibition: a promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res. 2010, 34: 1111-1118. 10.1016/j.leukres.2010.04.001CrossRefPubMed
45.
go back to reference Dasmahapatra G, Lembersky D, Kramer L, Fisher RI, Friedberg J, Dent P, Grant S: The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood. 2010, 115: 4478-4487. 10.1182/blood-2009-12-257261PubMedCentralCrossRefPubMed Dasmahapatra G, Lembersky D, Kramer L, Fisher RI, Friedberg J, Dent P, Grant S: The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood. 2010, 115: 4478-4487. 10.1182/blood-2009-12-257261PubMedCentralCrossRefPubMed
46.
go back to reference Heider U, Rademacher J, Lamottke B, Mieth M, Moebs M, von Metzler I, Assaf C, Sezer O: Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T-cell lymphoma. Eur J Haematol. 2009, 82: 440-449. 10.1111/j.1600-0609.2009.01239.xCrossRefPubMed Heider U, Rademacher J, Lamottke B, Mieth M, Moebs M, von Metzler I, Assaf C, Sezer O: Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T-cell lymphoma. Eur J Haematol. 2009, 82: 440-449. 10.1111/j.1600-0609.2009.01239.xCrossRefPubMed
47.
go back to reference Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li C-CH, Kenten JH, Beutler JA, Vousden KH, Weissman AM: Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007, 67: 9472-9481. 10.1158/0008-5472.CAN-07-0568CrossRefPubMed Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li C-CH, Kenten JH, Beutler JA, Vousden KH, Weissman AM: Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007, 67: 9472-9481. 10.1158/0008-5472.CAN-07-0568CrossRefPubMed
48.
go back to reference Jonas BA, Privalsky ML: SMRT and N-Cor corepressors are regulated by distinct kinase signaling pathways. J Biol Chem. 2004, 279: 54676-54686. 10.1074/jbc.M410128200PubMedCentralCrossRefPubMed Jonas BA, Privalsky ML: SMRT and N-Cor corepressors are regulated by distinct kinase signaling pathways. J Biol Chem. 2004, 279: 54676-54686. 10.1074/jbc.M410128200PubMedCentralCrossRefPubMed
49.
go back to reference Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Baldi A, De Luca A, Rotili D, Valente S, Mai A, Usiello A, Gronenmeyer H, Altucci L: Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Reports. 2009, 10: 776-782. 10.1038/embor.2009.88PubMedCentralCrossRefPubMed Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Baldi A, De Luca A, Rotili D, Valente S, Mai A, Usiello A, Gronenmeyer H, Altucci L: Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Reports. 2009, 10: 776-782. 10.1038/embor.2009.88PubMedCentralCrossRefPubMed
50.
go back to reference Zhou Y, Gross W, Hong SH, Privalsky ML: The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol Cell Biochem. 2001, 220: 1-13. 10.1023/A:1011087910699PubMedCentralCrossRefPubMed Zhou Y, Gross W, Hong SH, Privalsky ML: The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol Cell Biochem. 2001, 220: 1-13. 10.1023/A:1011087910699PubMedCentralCrossRefPubMed
51.
go back to reference Zhang X, Ozawa Y, Lee H, Wen YD, Tan TH, Wadzinski BE, Seto E: Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev. 2005, 197: 827-839. 10.1101/gad.1286005.CrossRef Zhang X, Ozawa Y, Lee H, Wen YD, Tan TH, Wadzinski BE, Seto E: Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev. 2005, 197: 827-839. 10.1101/gad.1286005.CrossRef
52.
go back to reference Stanya KJ, Liu Y, Means AR, Kao HY: Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol. 2008, 183: 49-61. 10.1083/jcb.200806172PubMedCentralCrossRefPubMed Stanya KJ, Liu Y, Means AR, Kao HY: Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol. 2008, 183: 49-61. 10.1083/jcb.200806172PubMedCentralCrossRefPubMed
53.
go back to reference Obsilova V, Silhan J, Boura E, Teisinger J, Obsil T: 14-3-3 proteins: a family of versatile molecular regulators. Physiol Res (Suppl 3). 2008, 57: S11-S21. Obsilova V, Silhan J, Boura E, Teisinger J, Obsil T: 14-3-3 proteins: a family of versatile molecular regulators. Physiol Res (Suppl 3). 2008, 57: S11-S21.
54.
go back to reference Healy S, Khan DH, Davie JR: Gene expression regulation through 14-3-3 interactions with histones and HDACs. Discov Med. 2011, 59: 349-358. Healy S, Khan DH, Davie JR: Gene expression regulation through 14-3-3 interactions with histones and HDACs. Discov Med. 2011, 59: 349-358.
55.
go back to reference Zhou J, Shao Z, Kerkela R, Ichijo H, Muslin AJ, Pombo C, Force T: Serine 58 of 14-3-3ζ is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol Cell Biol. 2009, 29: 4167-4176. 10.1128/MCB.01067-08PubMedCentralCrossRefPubMed Zhou J, Shao Z, Kerkela R, Ichijo H, Muslin AJ, Pombo C, Force T: Serine 58 of 14-3-3ζ is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol Cell Biol. 2009, 29: 4167-4176. 10.1128/MCB.01067-08PubMedCentralCrossRefPubMed
56.
go back to reference Nishino TG, Miyazaki M, Hoshino H, Miwa Y, Horinouchi S, Yoshida M: 14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem Biophys Res Commun. 2008, 377: 852-856. 10.1016/j.bbrc.2008.10.079CrossRefPubMed Nishino TG, Miyazaki M, Hoshino H, Miwa Y, Horinouchi S, Yoshida M: 14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem Biophys Res Commun. 2008, 377: 852-856. 10.1016/j.bbrc.2008.10.079CrossRefPubMed
57.
go back to reference Pappa G, Bartsch H, Gerhauser C: Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line. Mol Nutr Food Res. 2007, 51: 977-984. 10.1002/mnfr.200700115CrossRefPubMed Pappa G, Bartsch H, Gerhauser C: Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line. Mol Nutr Food Res. 2007, 51: 977-984. 10.1002/mnfr.200700115CrossRefPubMed
58.
go back to reference Gibbs A, Schwartzman J, Deng V, Alumkal J: Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci USA. 2009, 106: 16663-16668. 10.1073/pnas.0908908106PubMedCentralCrossRefPubMed Gibbs A, Schwartzman J, Deng V, Alumkal J: Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci USA. 2009, 106: 16663-16668. 10.1073/pnas.0908908106PubMedCentralCrossRefPubMed
59.
go back to reference Clarke JD, Dashwood RH, Ho E: Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate epithelial cells and cancerous prostate cells (PC3). Mol Nutr Food Res. 2011 Clarke JD, Dashwood RH, Ho E: Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate epithelial cells and cancerous prostate cells (PC3). Mol Nutr Food Res. 2011
60.
go back to reference Varlakhanova N, Hahm JB, Privalsky ML: Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol Cell Endocrinol. 2011, 332: 180-188. 10.1016/j.mce.2010.10.010PubMedCentralCrossRefPubMed Varlakhanova N, Hahm JB, Privalsky ML: Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol Cell Endocrinol. 2011, 332: 180-188. 10.1016/j.mce.2010.10.010PubMedCentralCrossRefPubMed
61.
62.
63.
go back to reference Kimura MT, Irie S, Shoji-Hoshino S, Mukai J, Nadano D, Oshimura M, Sato TA: 14-3-3 is involved in p75 neutrophin receptor-mediated signal transduction. J Biol Chem. 2001, 276: 17291-17300. 10.1074/jbc.M005453200CrossRefPubMed Kimura MT, Irie S, Shoji-Hoshino S, Mukai J, Nadano D, Oshimura M, Sato TA: 14-3-3 is involved in p75 neutrophin receptor-mediated signal transduction. J Biol Chem. 2001, 276: 17291-17300. 10.1074/jbc.M005453200CrossRefPubMed
64.
go back to reference Bardai FH, D'Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci. 2011, 31: 1746-1751. 10.1523/JNEUROSCI.5704-10.2011PubMedCentralCrossRefPubMed Bardai FH, D'Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci. 2011, 31: 1746-1751. 10.1523/JNEUROSCI.5704-10.2011PubMedCentralCrossRefPubMed
65.
go back to reference Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P: Histone deacetylases 1 and 2 act in concert to promote G1-to-S progression. Genes Dev. 2010, 24: 455-469. 10.1101/gad.552310PubMedCentralCrossRefPubMed Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P: Histone deacetylases 1 and 2 act in concert to promote G1-to-S progression. Genes Dev. 2010, 24: 455-469. 10.1101/gad.552310PubMedCentralCrossRefPubMed
66.
go back to reference Simboeck E, Sawicka A, Zupkovitz G, Senese S, Winter S, Dequiedt F, Ogris E, Di Croce L, Chiocca S, Seiser C: A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J Biol Chem. 2010, 285: 41062-41073. 10.1074/jbc.M110.184481PubMedCentralCrossRefPubMed Simboeck E, Sawicka A, Zupkovitz G, Senese S, Winter S, Dequiedt F, Ogris E, Di Croce L, Chiocca S, Seiser C: A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J Biol Chem. 2010, 285: 41062-41073. 10.1074/jbc.M110.184481PubMedCentralCrossRefPubMed
67.
go back to reference Nian H, Delage B, Pinto JT, Dashwood RH: Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF promoter. Carcinogenesis. 2008, 29: 1816-1824. 10.1093/carcin/bgn165PubMedCentralCrossRefPubMed Nian H, Delage B, Pinto JT, Dashwood RH: Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF promoter. Carcinogenesis. 2008, 29: 1816-1824. 10.1093/carcin/bgn165PubMedCentralCrossRefPubMed
68.
go back to reference Nian H, Bisson WH, Dashwood WM, Pinto JT, Dashwood RH: Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis. 2009, 30: 1416-1423. 10.1093/carcin/bgp147PubMedCentralCrossRefPubMed Nian H, Bisson WH, Dashwood WM, Pinto JT, Dashwood RH: Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis. 2009, 30: 1416-1423. 10.1093/carcin/bgp147PubMedCentralCrossRefPubMed
Metadata
Title
Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly
Authors
Praveen Rajendran
Barbara Delage
W Mohaiza Dashwood
Tian-Wei Yu
Bradyn Wuth
David E Williams
Emily Ho
Roderick H Dashwood
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-68

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine