Skip to main content
Top
Published in: Cancer Cell International 1/2009

Open Access 01-12-2009 | Primary research

Pegylated derivatives of recombinant human arginase (rhArg1) for sustained in vivo activity in cancer therapy: preparation, characterization and analysis of their pharmacodynamics in vivo and in vitro and action upon hepatocellular carcinoma cell (HCC)

Authors: Sam-Mui Tsui, Wai-Man Lam, Tin-Lun Lam, Hiu-Chi Chong, Pui-Kin So, Sui-Yi Kwok, Simon Arnold, Paul Ning-Man Cheng, Denys N Wheatley, Wai-Hung Lo, Yun-Chung Leung

Published in: Cancer Cell International | Issue 1/2009

Login to get access

Abstract

Background

Protein used in medicine, e.g. interferon, are immunogenic and quickly broken down by the body. Pegylation is a recognized way of preserving their integrity and reducing immune reactions, and works well with enzymes used to degrade amino acids, a recent focus of attention in controlling cancer growth. Of the two arginine-degrading enzymes being explored clinically, arginine deiminase is a decidedly foreign mycoplasm-derived enzyme, whereas human arginase 1 is a native liver enzyme. Both have been pegylated, the former with adjuncts of 20 kD, the latter with 5 kD PEG. Pegylation is done by several different methods, not all of which are satisfactory or desirable.

Methods

The preparation of novel polyethylene glycol (PEG) derivatives for modifying proteins is described, but directed specifically at pegylation of recombinant human arginase 1 (rhArg1). rhArg1 expressed in Escherichia coli was purified and coupled in various ways with 5 different PEG molecules to compare their protective properties and the residual enzyme activity, using hepatocellular cell lines both in vitro and in vivo.

Results

Methoxypolyethylene glycol-succinimidyl propionate (mPEG-SPA 5,000) coupled with very high affinity under mild conditions. The resulting pegylated enzyme (rhArg1-peg5,000 mw) had up to 6 PEG chains of 5K length which not only protected it from degradation and any residual immunogenicity, but most importantly let it retain >90% of its native catalytic activity. It remained efficacious in depleting arginine in rats after a single ip injection of 1,500 U of the conjugate as the native enzyme, plasma arginine falling to >0.05 μM from ~170 μM within 20 min and lasting 6 days. The conjugate had almost the same efficacy as unpegylated rhArg1 on 2 cultured human liver cancer (HCC) cell lines. It was considerably more effective than 4 other pegylated conjugates prepared.

Conclusion

Valuable data on the optimization of the pegylation procedure and choice of ligand that best stabilizes the enzyme arginase 1 are presented, a protocol that should equally fit many other enzymes and proteins. It is a long lasting arginine-depleting enzyme in vivo which will greatly improve its use in anti-cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wheatley DN: Controlling cancer by restricting arginine availability – arginine-catabolizing enzymes as anticancer agents. Anticancer Drugs. 2004, 5: 825-833. 10.1097/00001813-200410000-00002.CrossRef Wheatley DN: Controlling cancer by restricting arginine availability – arginine-catabolizing enzymes as anticancer agents. Anticancer Drugs. 2004, 5: 825-833. 10.1097/00001813-200410000-00002.CrossRef
2.
go back to reference Wheatley DN, Campbell E, Lai PBS, Cheng PNM: A rational approach to the systemic treatment of cancer involving medium-term depletion of arginine. Gene Ther Mol Biol. 2005, 9: 33-40. Wheatley DN, Campbell E, Lai PBS, Cheng PNM: A rational approach to the systemic treatment of cancer involving medium-term depletion of arginine. Gene Ther Mol Biol. 2005, 9: 33-40.
3.
go back to reference Cheng PN, Leung YC, Lo WH, Tsui SM, Lam KC: Remission of hepatocellular carcinoma with arginine depletion induced by systemic release of endogenous hepatic arginase due to transhepatic arterial embolisation, augmented by high-dose insulin: arginase as a potential drug candidate for hepatocellular carcinoma. Cancer Lett. 2005, 224: 67-80.CrossRefPubMed Cheng PN, Leung YC, Lo WH, Tsui SM, Lam KC: Remission of hepatocellular carcinoma with arginine depletion induced by systemic release of endogenous hepatic arginase due to transhepatic arterial embolisation, augmented by high-dose insulin: arginase as a potential drug candidate for hepatocellular carcinoma. Cancer Lett. 2005, 224: 67-80.CrossRefPubMed
4.
go back to reference Cheng PN, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC: Pegylated recombinant human arginase (rhArg1-peg5,000 mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007, 67: 309-317. 10.1158/0008-5472.CAN-06-1945.CrossRefPubMed Cheng PN, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC: Pegylated recombinant human arginase (rhArg1-peg5,000 mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007, 67: 309-317. 10.1158/0008-5472.CAN-06-1945.CrossRefPubMed
5.
go back to reference Cheng P, Wheatley DN: Arginine deprivation addresses the Achilles Heel of Cancer: urea cycle deficiencies in melanoma, HCC and other cancers. Oncology News. 2008, 2 (4): 6-8. Cheng P, Wheatley DN: Arginine deprivation addresses the Achilles Heel of Cancer: urea cycle deficiencies in melanoma, HCC and other cancers. Oncology News. 2008, 2 (4): 6-8.
6.
go back to reference Takaku H, Takase M, Abe S, Hayashi H, Miyazaki K: In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer. 1992, 51: 244-249. 10.1002/ijc.2910510213.CrossRefPubMed Takaku H, Takase M, Abe S, Hayashi H, Miyazaki K: In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer. 1992, 51: 244-249. 10.1002/ijc.2910510213.CrossRefPubMed
7.
go back to reference Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA: Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002, 62: 5443-5450.PubMed Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA: Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002, 62: 5443-5450.PubMed
8.
go back to reference Broome JD: Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HEB lymphomas of mice: differences in asparagine formation and utilisation in asparaginase-sensitive and -resistant lymphoma cells. J Exp Med. 1968, 127: 1055-1072. 10.1084/jem.127.6.1055.PubMedCentralCrossRefPubMed Broome JD: Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HEB lymphomas of mice: differences in asparagine formation and utilisation in asparaginase-sensitive and -resistant lymphoma cells. J Exp Med. 1968, 127: 1055-1072. 10.1084/jem.127.6.1055.PubMedCentralCrossRefPubMed
9.
go back to reference Sun X, Yang Z, Li S, Tan Y, Zhang N, Wang X, Yagi S, Yoshioka T, Takimoto A, Mitsushima K, Suginaka A, Frenkel EP, Hoffman RM: In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5'-phosphate supplementation. Cancer Res. 2003, 63: 8377-8383.PubMed Sun X, Yang Z, Li S, Tan Y, Zhang N, Wang X, Yagi S, Yoshioka T, Takimoto A, Mitsushima K, Suginaka A, Frenkel EP, Hoffman RM: In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5'-phosphate supplementation. Cancer Res. 2003, 63: 8377-8383.PubMed
10.
go back to reference Ash DE: Structure and function of arginases. J Nutr. 2004, 134: 2760S-2764S.PubMed Ash DE: Structure and function of arginases. J Nutr. 2004, 134: 2760S-2764S.PubMed
11.
go back to reference Cheng NM, Leung YC, Lo WH: US Patent no. 20050244398. 2005 Cheng NM, Leung YC, Lo WH: US Patent no. 20050244398. 2005
12.
go back to reference Ikemoto M, Tabata M, Miyake T, Kono T, Mori M, Totani M, Murachi T: Expression of human liver arginase in Escherichia coli. Purification and properties of the product. Biochem J. 1990, 270: 697-703.PubMedCentralCrossRefPubMed Ikemoto M, Tabata M, Miyake T, Kono T, Mori M, Totani M, Murachi T: Expression of human liver arginase in Escherichia coli. Purification and properties of the product. Biochem J. 1990, 270: 697-703.PubMedCentralCrossRefPubMed
13.
go back to reference Roberts MJ, Harris JM: Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy. J Pharm Sci. 1998, 87: 1440-1445. 10.1021/js9800634.CrossRefPubMed Roberts MJ, Harris JM: Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy. J Pharm Sci. 1998, 87: 1440-1445. 10.1021/js9800634.CrossRefPubMed
14.
go back to reference Harris JM, Martin NE, Modi M: Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001, 40: 539-551. 10.2165/00003088-200140070-00005.CrossRefPubMed Harris JM, Martin NE, Modi M: Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001, 40: 539-551. 10.2165/00003088-200140070-00005.CrossRefPubMed
15.
go back to reference Harris JM, Chess RB: Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003, 2: 214-221. 10.1038/nrd1033.CrossRefPubMed Harris JM, Chess RB: Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003, 2: 214-221. 10.1038/nrd1033.CrossRefPubMed
16.
go back to reference Roberts MJ, Bentley MD, Harris JM: Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002, 54: 459-476. 10.1016/S0169-409X(02)00022-4.CrossRefPubMed Roberts MJ, Bentley MD, Harris JM: Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002, 54: 459-476. 10.1016/S0169-409X(02)00022-4.CrossRefPubMed
17.
go back to reference Goodson RJ, Katre NV: Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology (N Y). 1990, 8: 343-346. 10.1038/nbt0490-343.CrossRef Goodson RJ, Katre NV: Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology (N Y). 1990, 8: 343-346. 10.1038/nbt0490-343.CrossRef
18.
go back to reference Baker DE: Pegylated interferons. Rev Gastroenterol Disord. 2001, 1: 87-99.PubMed Baker DE: Pegylated interferons. Rev Gastroenterol Disord. 2001, 1: 87-99.PubMed
19.
go back to reference Savoca KV, Davis FF, van Es T, McCoy JR, Palczuk NC: Cancer therapy with chemically modified enzymes. II. The therapeutic effectiveness of arginase, and arginase modified by the covalent attachment of polyethylene glycol, on the taper liver tumor and the L5178Y murine leukemia. Cancer Biochem Biophys. 1984, 7: 261-268.PubMed Savoca KV, Davis FF, van Es T, McCoy JR, Palczuk NC: Cancer therapy with chemically modified enzymes. II. The therapeutic effectiveness of arginase, and arginase modified by the covalent attachment of polyethylene glycol, on the taper liver tumor and the L5178Y murine leukemia. Cancer Biochem Biophys. 1984, 7: 261-268.PubMed
20.
go back to reference Ikemoto M, Tabata M, Murachi T, Totani M: Purification and properties of human erythrocyte arginase. Ann Clin Biochem. 1989, 26: 547-553.CrossRefPubMed Ikemoto M, Tabata M, Murachi T, Totani M: Purification and properties of human erythrocyte arginase. Ann Clin Biochem. 1989, 26: 547-553.CrossRefPubMed
21.
go back to reference Holtsberg FW, Ensor CM, Steiner MR, Bomalaski JS, Clark MA: Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release. 2002, 80: 259-271. 10.1016/S0168-3659(02)00042-1.CrossRefPubMed Holtsberg FW, Ensor CM, Steiner MR, Bomalaski JS, Clark MA: Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release. 2002, 80: 259-271. 10.1016/S0168-3659(02)00042-1.CrossRefPubMed
22.
go back to reference Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, Beneduce G, De Rosa V, Izzo F, Melucci MT, Ensor CM, Prestayko AW, Holtsberg FW, Bomalaski JS, Clark MA, Savaraj N, Feun LG, Logan TF: Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol. 2005, 23: 7660-7668. 10.1200/JCO.2005.02.0933.CrossRefPubMed Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, Beneduce G, De Rosa V, Izzo F, Melucci MT, Ensor CM, Prestayko AW, Holtsberg FW, Bomalaski JS, Clark MA, Savaraj N, Feun LG, Logan TF: Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol. 2005, 23: 7660-7668. 10.1200/JCO.2005.02.0933.CrossRefPubMed
23.
go back to reference Goffin V, Touraine P: Pegvisomant Pfizer/Sensus. Curr Opin Investig Drugs. 2004, 5: 463-468.PubMed Goffin V, Touraine P: Pegvisomant Pfizer/Sensus. Curr Opin Investig Drugs. 2004, 5: 463-468.PubMed
24.
go back to reference Carvajal N, Salas M, Lopez V, Uribe E, Herrera P, Cerpa J, Fuentes M: Manganese-dependent inhibition of human liver arginase by borate. J Inorg Biochem. 1999, 77: 163-167. 10.1016/S0162-0134(99)00187-7.CrossRefPubMed Carvajal N, Salas M, Lopez V, Uribe E, Herrera P, Cerpa J, Fuentes M: Manganese-dependent inhibition of human liver arginase by borate. J Inorg Biochem. 1999, 77: 163-167. 10.1016/S0162-0134(99)00187-7.CrossRefPubMed
25.
go back to reference Savoca KV, Abuchowski A, van Es T, Davis FF, Palczuk NC: Preparation of a non-immunogenic arginase by the covalent attachment of polyethylene glycol. Biochim Biophys Acta. 1979, 578: 47-53.CrossRefPubMed Savoca KV, Abuchowski A, van Es T, Davis FF, Palczuk NC: Preparation of a non-immunogenic arginase by the covalent attachment of polyethylene glycol. Biochim Biophys Acta. 1979, 578: 47-53.CrossRefPubMed
26.
go back to reference Bowen S, Tare N, Inoue T, Yamasaki M, Okabe M, Horii I, Eliason JF: Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Exp Hematol. 1999, 27: 425-432. 10.1016/S0301-472X(98)00051-4.CrossRefPubMed Bowen S, Tare N, Inoue T, Yamasaki M, Okabe M, Horii I, Eliason JF: Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Exp Hematol. 1999, 27: 425-432. 10.1016/S0301-472X(98)00051-4.CrossRefPubMed
27.
go back to reference Kamada H, Tsutsumi Y, Yamamoto Y, Kihira T, Kaneda Y, Mu Y, Kodaira H, Tsunoda SI, Nakagawa S, Mayumi T: Antitumor activity of tumor necrosis factor-alpha conjugated with polyvinylpyrrolidone on solid tumors in mice. Cancer Res. 2000, 60: 6416-6420.PubMed Kamada H, Tsutsumi Y, Yamamoto Y, Kihira T, Kaneda Y, Mu Y, Kodaira H, Tsunoda SI, Nakagawa S, Mayumi T: Antitumor activity of tumor necrosis factor-alpha conjugated with polyvinylpyrrolidone on solid tumors in mice. Cancer Res. 2000, 60: 6416-6420.PubMed
28.
go back to reference Gong H, Zolzer F, von Recklinghausen G, Havers W, Schweigerer L: Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia. 2000, 14: 826-9. 10.1038/sj.leu.2401763.CrossRefPubMed Gong H, Zolzer F, von Recklinghausen G, Havers W, Schweigerer L: Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia. 2000, 14: 826-9. 10.1038/sj.leu.2401763.CrossRefPubMed
29.
go back to reference Philip R, Campbell E, Wheatley DN: Arginine deprivation, growth inhibition and tumour cell death: 2. Enzymatic degradation of arginine in normal and malignant cell cultures. Br J Cancer. 2003 Feb 24;88(4):613-23. 2003, 88 (4): 613-623. Philip R, Campbell E, Wheatley DN: Arginine deprivation, growth inhibition and tumour cell death: 2. Enzymatic degradation of arginine in normal and malignant cell cultures. Br J Cancer. 2003 Feb 24;88(4):613-23. 2003, 88 (4): 613-623.
30.
go back to reference Izzo F, Marra P, Beneduce G, Castello G, Vallone P, De Rosa V, Cremona F, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA, Ng C, Curley SA: Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol. 2004, 22: 1815-1822. 10.1200/JCO.2004.11.120.CrossRefPubMed Izzo F, Marra P, Beneduce G, Castello G, Vallone P, De Rosa V, Cremona F, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA, Ng C, Curley SA: Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol. 2004, 22: 1815-1822. 10.1200/JCO.2004.11.120.CrossRefPubMed
31.
go back to reference Sreerama N, Venyaminov SY, Woody RW: Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem. 2000, 287: 243-251. 10.1006/abio.2000.4879.CrossRefPubMed Sreerama N, Venyaminov SY, Woody RW: Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem. 2000, 287: 243-251. 10.1006/abio.2000.4879.CrossRefPubMed
Metadata
Title
Pegylated derivatives of recombinant human arginase (rhArg1) for sustained in vivo activity in cancer therapy: preparation, characterization and analysis of their pharmacodynamics in vivo and in vitro and action upon hepatocellular carcinoma cell (HCC)
Authors
Sam-Mui Tsui
Wai-Man Lam
Tin-Lun Lam
Hiu-Chi Chong
Pui-Kin So
Sui-Yi Kwok
Simon Arnold
Paul Ning-Man Cheng
Denys N Wheatley
Wai-Hung Lo
Yun-Chung Leung
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2009
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-9-9

Other articles of this Issue 1/2009

Cancer Cell International 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine