Skip to main content
Top
Published in: Cancer Cell International 1/2006

Open Access 01-12-2006 | Hypothesis

Mechanisms of genotoxin-induced transcription and hypermutation in p53

Authors: Barbara Wright, Jacqueline Reimers, Karen Schmidt, Evan Burkala, Nick Davis, Ping Wei

Published in: Cancer Cell International | Issue 1/2006

Login to get access

Abstract

It is widely assumed that genotoxin-induced damage (e.g., G-to-T transversions) to the tumor suppressor gene, p53, is a direct cause of cancer. However, genotoxins also induce the stress response, which upregulates p53 transcription and the formation of secondary structures from ssDNA. Since unpaired bases are thermodynamically unstable and intrinsically mutable, increased transcription could be the cause of hypermutation, and thus cancer. Support for this hypothesis has been obtained by analyzing 6662 mutations in all types of cancer compared to lung and colon cancers, using the p53 mutation database. The data suggest that genotoxins have two independent effects: first, they induce p53 transcription, which increases the number of mutable bases that determine the incidence of cancer. Second, genotoxins may alter the fate, or ultimate mutation of a mutable base, for example, by causing more of the available mutable Gs to mutate to T, leaving fewer to mutate to A. Such effects on the fate of mutable bases have no impact on the incidence of cancer, as both types of mutations lead to cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B: Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990, 249 (4971): 912-915. 10.1126/science.2144057.CrossRefPubMed Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B: Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990, 249 (4971): 912-915. 10.1126/science.2144057.CrossRefPubMed
2.
go back to reference Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992, 71 (4): 587-597. 10.1016/0092-8674(92)90593-2.CrossRefPubMed Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992, 71 (4): 587-597. 10.1016/0092-8674(92)90593-2.CrossRefPubMed
3.
go back to reference Levine AJ, Momand J, Finlay CA: The p53 tumour suppressor gene. Nature. 1991, 351 (6326): 453-456. 10.1038/351453a0.CrossRefPubMed Levine AJ, Momand J, Finlay CA: The p53 tumour suppressor gene. Nature. 1991, 351 (6326): 453-456. 10.1038/351453a0.CrossRefPubMed
4.
go back to reference Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science. 1991, 253 (5015): 49-53. 10.1126/science.1905840.CrossRefPubMed Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science. 1991, 253 (5015): 49-53. 10.1126/science.1905840.CrossRefPubMed
5.
go back to reference Nelson WG, Kastan MB: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 1994, 14 (3): 1815-1823.PubMedCentralCrossRefPubMed Nelson WG, Kastan MB: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 1994, 14 (3): 1815-1823.PubMedCentralCrossRefPubMed
6.
go back to reference Pfeifer GP: p53 mutational spectra and the role of methylated CpG sequences. Mutat Res. 2000, 450 (1-2): 155-166.CrossRefPubMed Pfeifer GP: p53 mutational spectra and the role of methylated CpG sequences. Mutat Res. 2000, 450 (1-2): 155-166.CrossRefPubMed
7.
go back to reference Rodin SN, Rodin AS: Origins and selection of p53 mutations in lung carcinogenesis. Semin Cancer Biol. 2005, 15 (2): 103-112. 10.1016/j.semcancer.2004.08.005.CrossRefPubMed Rodin SN, Rodin AS: Origins and selection of p53 mutations in lung carcinogenesis. Semin Cancer Biol. 2005, 15 (2): 103-112. 10.1016/j.semcancer.2004.08.005.CrossRefPubMed
8.
go back to reference Smith LE, Denissenko MF, Bennett WP, Li H, Amin S, Tang M, Pfeifer GP: Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 2000, 92 (10): 803-11.CrossRefPubMed Smith LE, Denissenko MF, Bennett WP, Li H, Amin S, Tang M, Pfeifer GP: Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 2000, 92 (10): 803-11.CrossRefPubMed
9.
go back to reference Amundson SA, Do KT, Vinikoor L, Koch-Paiz CA, Bittner ML, Trent JM, Meltzer P, Fornace AJ: Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene. 2005, 24 (28): 4572-4579. 10.1038/sj.onc.1208653.CrossRefPubMed Amundson SA, Do KT, Vinikoor L, Koch-Paiz CA, Bittner ML, Trent JM, Meltzer P, Fornace AJ: Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene. 2005, 24 (28): 4572-4579. 10.1038/sj.onc.1208653.CrossRefPubMed
10.
go back to reference Wright BE, Longacre A, Reimers JM: Hypermutation in derepressed operons of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1999, 96 (9): 5089-5094. 10.1073/pnas.96.9.5089.PubMedCentralCrossRefPubMed Wright BE, Longacre A, Reimers JM: Hypermutation in derepressed operons of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1999, 96 (9): 5089-5094. 10.1073/pnas.96.9.5089.PubMedCentralCrossRefPubMed
11.
go back to reference Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W: Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol. 2003, 48 (2): 429-441. 10.1046/j.1365-2958.2003.t01-1-03436.x.CrossRefPubMed Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W: Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol. 2003, 48 (2): 429-441. 10.1046/j.1365-2958.2003.t01-1-03436.x.CrossRefPubMed
12.
13.
go back to reference Wright BE: Stress-directed adaptive mutations and evolution. Mol Microbiol. 2004, 52 (3): 643-650. 10.1111/j.1365-2958.2004.04012.x.CrossRefPubMed Wright BE: Stress-directed adaptive mutations and evolution. Mol Microbiol. 2004, 52 (3): 643-650. 10.1111/j.1365-2958.2004.04012.x.CrossRefPubMed
14.
go back to reference Reimers JM, Schmidt KH, Longacre A, Reschke DK, Wright BE: Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology. 2004, 150 (Pt 5): 1457-1466. 10.1099/mic.0.26954-0.CrossRefPubMed Reimers JM, Schmidt KH, Longacre A, Reschke DK, Wright BE: Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology. 2004, 150 (Pt 5): 1457-1466. 10.1099/mic.0.26954-0.CrossRefPubMed
15.
go back to reference Schmidt KH, Reimers JM, Wright BE: The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol. 2006, 60 (5): 1251-1261. 10.1111/j.1365-2958.2006.05166.x.CrossRefPubMed Schmidt KH, Reimers JM, Wright BE: The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol. 2006, 60 (5): 1251-1261. 10.1111/j.1365-2958.2006.05166.x.CrossRefPubMed
16.
go back to reference Ghosh R, Mitchell DL: Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999, 27 (15): 3213-3218. 10.1093/nar/27.15.3213.PubMedCentralCrossRefPubMed Ghosh R, Mitchell DL: Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999, 27 (15): 3213-3218. 10.1093/nar/27.15.3213.PubMedCentralCrossRefPubMed
17.
go back to reference Wright BE, Reimers JM, Schmidt KH, Reschke DK: Hypermutable bases in the p53 cancer gene are at vulnerable positions in DNA secondary structures. Cancer Res. 2002, 62 (20): 5641-5644.PubMed Wright BE, Reimers JM, Schmidt KH, Reschke DK: Hypermutable bases in the p53 cancer gene are at vulnerable positions in DNA secondary structures. Cancer Res. 2002, 62 (20): 5641-5644.PubMed
18.
go back to reference Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C: Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol. 2001, 166 (8): 5051-5057.CrossRefPubMed Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C: Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol. 2001, 166 (8): 5051-5057.CrossRefPubMed
19.
go back to reference Fontanini G, Vignati S, Bigini D, Merlo GR, Ribecchini A, Angeletti CA, Basolo F, Pingitore R, Bevilacqua G: Human non-small cell lung cancer: p53 protein accumulation is an early event and persists during metastatic progression. J Pathol. 1994, 174 (1): 23-31. 10.1002/path.1711740105.CrossRefPubMed Fontanini G, Vignati S, Bigini D, Merlo GR, Ribecchini A, Angeletti CA, Basolo F, Pingitore R, Bevilacqua G: Human non-small cell lung cancer: p53 protein accumulation is an early event and persists during metastatic progression. J Pathol. 1994, 174 (1): 23-31. 10.1002/path.1711740105.CrossRefPubMed
20.
go back to reference Parenti AR, Rugge M, Frizzera E, Ruol A, Noventa F, Ancona E, Ninfo V: p53 overexpression in the multistep process of esophageal carcinogenesis. Am J Surg Pathol. 1995, 19 (12): 1418-1422.CrossRefPubMed Parenti AR, Rugge M, Frizzera E, Ruol A, Noventa F, Ancona E, Ninfo V: p53 overexpression in the multistep process of esophageal carcinogenesis. Am J Surg Pathol. 1995, 19 (12): 1418-1422.CrossRefPubMed
21.
go back to reference Sun X, Shimizu H, Yamamoto K: Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol. 1995, 15 (8): 4489-4496.PubMedCentralCrossRefPubMed Sun X, Shimizu H, Yamamoto K: Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol. 1995, 15 (8): 4489-4496.PubMedCentralCrossRefPubMed
22.
go back to reference Pei XH, Nakanishi Y, Takayama K, Bai F, Hara N: Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor kappaB activity. J Biol Chem. 1999, 274 (49): 35240-35246. 10.1074/jbc.274.49.35240.CrossRefPubMed Pei XH, Nakanishi Y, Takayama K, Bai F, Hara N: Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor kappaB activity. J Biol Chem. 1999, 274 (49): 35240-35246. 10.1074/jbc.274.49.35240.CrossRefPubMed
23.
go back to reference Kroncke KD: Nitrosative stress and transcription. Biol Chem. 2003, 384 (10-11): 1365-1377. 10.1515/BC.2003.153.CrossRefPubMed Kroncke KD: Nitrosative stress and transcription. Biol Chem. 2003, 384 (10-11): 1365-1377. 10.1515/BC.2003.153.CrossRefPubMed
24.
go back to reference Wu H, Lozano G: NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem. 1994, 269 (31): 20067-20074.PubMed Wu H, Lozano G: NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem. 1994, 269 (31): 20067-20074.PubMed
25.
26.
go back to reference Lindahl T: Instability and decay of the primary structure of DNA. Nature. 1993, 362 (6422): 709-715. 10.1038/362709a0.CrossRefPubMed Lindahl T: Instability and decay of the primary structure of DNA. Nature. 1993, 362 (6422): 709-715. 10.1038/362709a0.CrossRefPubMed
27.
go back to reference Singer B, Kusmierek JT: Chemical mutagenesis. Annu Rev Biochem. 1982, 51: 655-693. 10.1146/annurev.bi.51.070182.003255.CrossRefPubMed Singer B, Kusmierek JT: Chemical mutagenesis. Annu Rev Biochem. 1982, 51: 655-693. 10.1146/annurev.bi.51.070182.003255.CrossRefPubMed
28.
go back to reference Cooper DN, Youssoufian H: The CpG dinucleotide and human genetic disease. Hum Genet. 1988, 78 (2): 151-155. 10.1007/BF00278187.CrossRefPubMed Cooper DN, Youssoufian H: The CpG dinucleotide and human genetic disease. Hum Genet. 1988, 78 (2): 151-155. 10.1007/BF00278187.CrossRefPubMed
30.
go back to reference Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM: Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol. 1999, 292 (5): 1149-1160. 10.1006/jmbi.1999.3117.CrossRefPubMed Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM: Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol. 1999, 292 (5): 1149-1160. 10.1006/jmbi.1999.3117.CrossRefPubMed
32.
go back to reference Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, Hainaut P: IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines. International Agency for Research on Cancer. Hum Mutat. 1999, 14 (1): 1-8. 10.1002/(SICI)1098-1004(1999)14:1<1::AID-HUMU1>3.0.CO;2-H.CrossRefPubMed Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, Hainaut P: IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines. International Agency for Research on Cancer. Hum Mutat. 1999, 14 (1): 1-8. 10.1002/(SICI)1098-1004(1999)14:1<1::AID-HUMU1>3.0.CO;2-H.CrossRefPubMed
Metadata
Title
Mechanisms of genotoxin-induced transcription and hypermutation in p53
Authors
Barbara Wright
Jacqueline Reimers
Karen Schmidt
Evan Burkala
Nick Davis
Ping Wei
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2006
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-6-27

Other articles of this Issue 1/2006

Cancer Cell International 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine