Skip to main content
Top
Published in: Cancer Cell International 1/2011

Open Access 01-12-2011 | Primary research

Upstream molecular signaling pathways of p27 (Kip1) expression in human breast cancer cells in vitro: differential effects of 4-hydroxytamoxifen and deficiency of either D-(+)-glucose or L-leucine

Author: Isao Eto

Published in: Cancer Cell International | Issue 1/2011

Login to get access

Abstract

Background

The objective of this study was to investigate whether the levels of glucose or certain amino acids could regulate the expression of a cell cycle repressor protein p27(Kip1), thereby dictating the risk of cancer in either obesity or caloric/dietary restriction. Previously, we identified and reported four different upstream molecular signaling pathways of p27 expression in human breast cancer cells. We called these four pathways as pathway #1, #2, #3 and #4. We found that 4-hydroxytamoxifen - but not tamoxifen - up-regulated the expression of p27 using pathway #1 which consisted mainly of receptor tyrosine kinases and mTORC1. We now investigate, using 4-hydroxytamoxifen as a reference anti-cancer agents, whether (a) the moderate increase in the concentration of D-(+)-glucose could down-regulate and, conversely, (b) the deficiency of D-(+)-glucose or certain L-amino acids could up-regulate the expression of p27 in these cells using pathway #2 which consists mainly of AMPK and mTORC1.

Results

Using human MDA-MB-231 breast cancer cells in vitro, these hypotheses were tested experimentally by performing p27-luciferase reporter transfection assays and western immunoblot analyses. The results obtained are consistent with these hypotheses. Furthermore, the results indicated that, although 4-hydroxytamoxifen used primarily pathway #1 to down-regulate the phosphorylation of 4E-BP1 and up-regulate the expression of p27, it also secondarily down-regulated the phosphorylation of S6K1. In contrast, the deficiency of D-(+)-glucose or L-leucine used primarily pathway #2 to down-regulate the phosphorylation of S6K1, but they also secondarily down-regulated the phosphorylation of 4E-BP1 and up-regulated the expression of p27. Finally, deficiency of D-(+)-glucose or L-leucine - but not 4-hydroxytamoxifen - up-regulated the expression of mitochondrial ATP5A and SIRT3.

Conclusions

(a) 4-Hydroxitamoxifen used primarily pathway #1 to up-regulate the expression of p27. (b) Moderate increase in the concentration of D-(+)-glucose used primarily pathway #2 to down-regulate the expression of p27. (c) Deficiency of D-(+)-glucose or L-leucine also used primarily pathway #2 to up-regulate the expression of p27. (d) Deficiency of D-(+)-glucose or L-leucine - but not 4-hydroxytamoxifen - up-regulated the expression of mitochondrial ATP5A in the Complex V of respiratory oxidation-phosphorylation chain and mitochondrial SIRT3. The SIRT3 is one of the seven mammalian anti-aging as well as anti-metabolic sirtuins.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eto I: Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell Int. 2006, 6: 20-10.1186/1475-2867-6-20. (pp. 1-19)PubMedCentralCrossRefPubMed Eto I: Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell Int. 2006, 6: 20-10.1186/1475-2867-6-20. (pp. 1-19)PubMedCentralCrossRefPubMed
2.
go back to reference Eto I: Upstream molecular signaling pathways of p27(Kip1) expression: Effects of 4-hydroxytamoxifen, dexamethasone, and retinoic acids. Cancer Cell Int. 2010, 10: 3-10.1186/1475-2867-10-3. (pp. 1-19)PubMedCentralCrossRefPubMed Eto I: Upstream molecular signaling pathways of p27(Kip1) expression: Effects of 4-hydroxytamoxifen, dexamethasone, and retinoic acids. Cancer Cell Int. 2010, 10: 3-10.1186/1475-2867-10-3. (pp. 1-19)PubMedCentralCrossRefPubMed
3.
go back to reference Eto I: G1 cell cycle regulatory proteins in chemically induced rat mammary adenocarcinomas in vivo and tumor promotion-sensitive, -resistant, and transformed mouse epidermal cells in vitro. Cell Cycle. 2003, 2: 149-156.CrossRefPubMed Eto I: G1 cell cycle regulatory proteins in chemically induced rat mammary adenocarcinomas in vivo and tumor promotion-sensitive, -resistant, and transformed mouse epidermal cells in vitro. Cell Cycle. 2003, 2: 149-156.CrossRefPubMed
4.
go back to reference Goepfert U, Kullmann M, Hengst L: Cell cycle-dependent translation of p27 involves a responsive element in its 5'-UTR that overlaps with a uORF. Hum Mol Genet. 2003, 12: 1767-1779. 10.1093/hmg/ddg177.CrossRef Goepfert U, Kullmann M, Hengst L: Cell cycle-dependent translation of p27 involves a responsive element in its 5'-UTR that overlaps with a uORF. Hum Mol Genet. 2003, 12: 1767-1779. 10.1093/hmg/ddg177.CrossRef
5.
go back to reference Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ: Repression of p27(kip1) synthesis by PDGF in balb/c 3T3 cells. Mol Cell Biol. 1996, 16: 4327-4336.PubMedCentralCrossRefPubMed Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ: Repression of p27(kip1) synthesis by PDGF in balb/c 3T3 cells. Mol Cell Biol. 1996, 16: 4327-4336.PubMedCentralCrossRefPubMed
6.
go back to reference Hengst L, Reed SI: Translational control of p27Kip1 accumulation during the cell cycle. Science. 1996, 271: 1861-1864. 10.1126/science.271.5257.1861.CrossRefPubMed Hengst L, Reed SI: Translational control of p27Kip1 accumulation during the cell cycle. Science. 1996, 271: 1861-1864. 10.1126/science.271.5257.1861.CrossRefPubMed
7.
go back to reference Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koff A: Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem. 1997, 272: 7093-7098. 10.1074/jbc.272.11.7093.CrossRefPubMed Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koff A: Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem. 1997, 272: 7093-7098. 10.1074/jbc.272.11.7093.CrossRefPubMed
8.
go back to reference Kullmann M, Goepfert U, Siewe B, Hengst L: ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR. Genes Dev. 2002, 16: 3087-3099. 10.1101/gad.248902.PubMedCentralCrossRefPubMed Kullmann M, Goepfert U, Siewe B, Hengst L: ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR. Genes Dev. 2002, 16: 3087-3099. 10.1101/gad.248902.PubMedCentralCrossRefPubMed
9.
go back to reference Miskimins WK, Wang G, Hawkinson M, Miskimins R: Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol Cell Biol. 2001, 21: 4960-4967. 10.1128/MCB.21.15.4960-4967.2001.PubMedCentralCrossRefPubMed Miskimins WK, Wang G, Hawkinson M, Miskimins R: Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol Cell Biol. 2001, 21: 4960-4967. 10.1128/MCB.21.15.4960-4967.2001.PubMedCentralCrossRefPubMed
10.
go back to reference Millard SS, Vidal A, Markus M, Koff A: A U-rich element in the 5' untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol. 2000, 20: 5947-5959. 10.1128/MCB.20.16.5947-5959.2000.PubMedCentralCrossRefPubMed Millard SS, Vidal A, Markus M, Koff A: A U-rich element in the 5' untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol. 2000, 20: 5947-5959. 10.1128/MCB.20.16.5947-5959.2000.PubMedCentralCrossRefPubMed
11.
go back to reference Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995, 269: 682-685. 10.1126/science.7624798.CrossRefPubMed Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995, 269: 682-685. 10.1126/science.7624798.CrossRefPubMed
12.
go back to reference Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S: Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem. 2001, 276: 48937-48943. 10.1074/jbc.M107274200.CrossRefPubMed Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S: Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem. 2001, 276: 48937-48943. 10.1074/jbc.M107274200.CrossRefPubMed
13.
go back to reference Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM, Kyriakidis TR: A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature. 2001, 413: 323-327. 10.1038/35095083.CrossRefPubMed Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM, Kyriakidis TR: A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature. 2001, 413: 323-327. 10.1038/35095083.CrossRefPubMed
14.
go back to reference Hengst L: A second RING to destroy p27 Kip1 . Nature Cell Biol. 2004, 6: 1153-1155. 10.1038/ncb1204-1153.CrossRefPubMed Hengst L: A second RING to destroy p27 Kip1 . Nature Cell Biol. 2004, 6: 1153-1155. 10.1038/ncb1204-1153.CrossRefPubMed
15.
go back to reference Soos TJ, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio A, Bottega S, Wong B, Mendelsohn J, Koff A: Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ. 1996, 7: 135-146.PubMed Soos TJ, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio A, Bottega S, Wong B, Mendelsohn J, Koff A: Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ. 1996, 7: 135-146.PubMed
16.
go back to reference Rodier G, Montagnoli A, Di Marcotullio L, Coulombe P, Draetta GF, Pagano M, Meloche S: p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 2001, 20: 6672-6682. 10.1093/emboj/20.23.6672.PubMedCentralCrossRefPubMed Rodier G, Montagnoli A, Di Marcotullio L, Coulombe P, Draetta GF, Pagano M, Meloche S: p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 2001, 20: 6672-6682. 10.1093/emboj/20.23.6672.PubMedCentralCrossRefPubMed
17.
go back to reference Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M: Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002, 8: 1136-1144. 10.1038/nm762.CrossRefPubMed Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M: Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002, 8: 1136-1144. 10.1038/nm762.CrossRefPubMed
18.
go back to reference Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM: PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med. 2002, 8: 1153-1160. 10.1038/nm761.CrossRefPubMed Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM: PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med. 2002, 8: 1153-1160. 10.1038/nm761.CrossRefPubMed
19.
go back to reference Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL: PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002, 8: 1145-1152. 10.1038/nm759.CrossRefPubMed Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL: PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002, 8: 1145-1152. 10.1038/nm759.CrossRefPubMed
20.
go back to reference Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM: CRM1/RAN-mediated nuclear export of p27 Kip1 involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell. 2003, 14: 201-213. 10.1091/mbc.E02-06-0319.PubMedCentralCrossRefPubMed Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM: CRM1/RAN-mediated nuclear export of p27 Kip1 involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell. 2003, 14: 201-213. 10.1091/mbc.E02-06-0319.PubMedCentralCrossRefPubMed
21.
go back to reference Ciarallo S, Subramanian V, Hung W, Lee JH, Kotchetkov R, Sandhu C, Milic A, Slingerland JM: Altered p27Kip1 phosphorylation, localization, and function in human epithelial cells resistant to transforming growth factor β-mediated G1 arrest. Mol Cell Biol. 2002, 22: 2993-3002. 10.1128/MCB.22.9.2993-3002.2002.PubMedCentralCrossRefPubMed Ciarallo S, Subramanian V, Hung W, Lee JH, Kotchetkov R, Sandhu C, Milic A, Slingerland JM: Altered p27Kip1 phosphorylation, localization, and function in human epithelial cells resistant to transforming growth factor β-mediated G1 arrest. Mol Cell Biol. 2002, 22: 2993-3002. 10.1128/MCB.22.9.2993-3002.2002.PubMedCentralCrossRefPubMed
22.
go back to reference Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, Sun P, Tan CK, Hengst L, Slingerland J: p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell. 2007, 128: 281-294. 10.1016/j.cell.2006.11.049.PubMedCentralCrossRefPubMed Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, Sun P, Tan CK, Hengst L, Slingerland J: p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell. 2007, 128: 281-294. 10.1016/j.cell.2006.11.049.PubMedCentralCrossRefPubMed
23.
go back to reference Kazi A, Carie A, Blaskovich MA, Bucher C, Thai V, Moulder S, Peng H, Carrico D, Pusateri E, J. Pledger WJ, Berndt N, Hamilton A, Sebti SM: Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: Implications for breast cancer therapy. Mol Cell Biol. 2009, 29: 2254-2263. 10.1128/MCB.01029-08.PubMedCentralCrossRefPubMed Kazi A, Carie A, Blaskovich MA, Bucher C, Thai V, Moulder S, Peng H, Carrico D, Pusateri E, J. Pledger WJ, Berndt N, Hamilton A, Sebti SM: Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: Implications for breast cancer therapy. Mol Cell Biol. 2009, 29: 2254-2263. 10.1128/MCB.01029-08.PubMedCentralCrossRefPubMed
24.
go back to reference Law IKM, Liu L, Xu A, Lam KSL, Vanhoutte PM, Che CM, Leung PTY, Wang Y: Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics. 2009, 9: 2444-2456. 10.1002/pmic.200800738.CrossRefPubMed Law IKM, Liu L, Xu A, Lam KSL, Vanhoutte PM, Che CM, Leung PTY, Wang Y: Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics. 2009, 9: 2444-2456. 10.1002/pmic.200800738.CrossRefPubMed
25.
go back to reference Laplante M, Sabatini DM: mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proc Natl Acad Sci US. 2010, 107: 3281-3282. 10.1073/pnas.1000323107.CrossRef Laplante M, Sabatini DM: mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proc Natl Acad Sci US. 2010, 107: 3281-3282. 10.1073/pnas.1000323107.CrossRef
26.
go back to reference Sengupta S, Peterson TR, Sabatini DM: Regulation of the mTOR Complex 1 Pathway by Nutrients, Growth Factors, and Stress. Molecular Cell. 2010, 40: 310-322. 10.1016/j.molcel.2010.09.026.PubMedCentralCrossRefPubMed Sengupta S, Peterson TR, Sabatini DM: Regulation of the mTOR Complex 1 Pathway by Nutrients, Growth Factors, and Stress. Molecular Cell. 2010, 40: 310-322. 10.1016/j.molcel.2010.09.026.PubMedCentralCrossRefPubMed
27.
go back to reference Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD: Activation of a metabolic gene regulatory network downstream of mTOR complex. Molecular Cell. 2010, 39: 171-183. 10.1016/j.molcel.2010.06.022.PubMedCentralCrossRefPubMed Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD: Activation of a metabolic gene regulatory network downstream of mTOR complex. Molecular Cell. 2010, 39: 171-183. 10.1016/j.molcel.2010.06.022.PubMedCentralCrossRefPubMed
28.
go back to reference Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A: SREBP activity Is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8: 224-236. 10.1016/j.cmet.2008.07.007.PubMedCentralCrossRefPubMed Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A: SREBP activity Is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8: 224-236. 10.1016/j.cmet.2008.07.007.PubMedCentralCrossRefPubMed
29.
go back to reference Naidoo N, Zhang L, Romer M, Cater JR, Scharf MT, Raymond J. Galante RJ, Pack AI: Changes in components of energy regulation in mouse cortex with Increases in wakefulness. SLEEP. 2010, 33: 889-900.PubMedCentralPubMed Naidoo N, Zhang L, Romer M, Cater JR, Scharf MT, Raymond J. Galante RJ, Pack AI: Changes in components of energy regulation in mouse cortex with Increases in wakefulness. SLEEP. 2010, 33: 889-900.PubMedCentralPubMed
30.
go back to reference Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolf PP, Haigis MC: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1a destabilization. Cancer Cell. 2011, 19: 416-428. 10.1016/j.ccr.2011.02.014.PubMedCentralCrossRefPubMed Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolf PP, Haigis MC: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1a destabilization. Cancer Cell. 2011, 19: 416-428. 10.1016/j.ccr.2011.02.014.PubMedCentralCrossRefPubMed
31.
go back to reference Giralt A, Hondares E, Villena JA, Ribas F, Díaz-Delfín J, Giralt M, Iglesias R, Villarroya F: Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J Biol Chem. 2011, 286: 16958-16966. 10.1074/jbc.M110.202390.PubMedCentralCrossRefPubMed Giralt A, Hondares E, Villena JA, Ribas F, Díaz-Delfín J, Giralt M, Iglesias R, Villarroya F: Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J Biol Chem. 2011, 286: 16958-16966. 10.1074/jbc.M110.202390.PubMedCentralCrossRefPubMed
32.
go back to reference Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns NA, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Sarki A. Abdulkadir SA, Douglas R. Spitz DR, Chu-Xia Deng CX, Gius D: SIRT3 Is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010, 17: 41-52. 10.1016/j.ccr.2009.11.023.PubMedCentralCrossRefPubMed Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns NA, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Sarki A. Abdulkadir SA, Douglas R. Spitz DR, Chu-Xia Deng CX, Gius D: SIRT3 Is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010, 17: 41-52. 10.1016/j.ccr.2009.11.023.PubMedCentralCrossRefPubMed
33.
go back to reference Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y: Sirtuin 3, a new target of PGC-1a, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE. 2010, 5: e11707-10.1371/journal.pone.0011707.PubMedCentralCrossRefPubMed Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y: Sirtuin 3, a new target of PGC-1a, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE. 2010, 5: e11707-10.1371/journal.pone.0011707.PubMedCentralCrossRefPubMed
34.
go back to reference Liu Y, Zhang D, Chen D: SIRT3: Striking at the heart of aging. Aging. 2010, 12: 914-923. Liu Y, Zhang D, Chen D: SIRT3: Striking at the heart of aging. Aging. 2010, 12: 914-923.
35.
go back to reference Choudhury M, Jonscher KR, Friedman JE: Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat. AGING. 2011, 3: 175-178.PubMedCentralPubMed Choudhury M, Jonscher KR, Friedman JE: Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat. AGING. 2011, 3: 175-178.PubMedCentralPubMed
36.
go back to reference Huang JY, Hirschey MD, Shimazu T, Ho L, Verdin E: Mitochondrial sirtuins. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics. 2010, 1804: 1645-1651. 10.1016/j.bbapap.2009.12.021.CrossRef Huang JY, Hirschey MD, Shimazu T, Ho L, Verdin E: Mitochondrial sirtuins. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics. 2010, 1804: 1645-1651. 10.1016/j.bbapap.2009.12.021.CrossRef
37.
go back to reference Palacios OM, Carmona JJ, Michan S, Ke KY, Manabe Y, Ward III, Goodyear LJ, Tong Q: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. AGING. 2009, 1: 771-783.PubMedCentralPubMed Palacios OM, Carmona JJ, Michan S, Ke KY, Manabe Y, Ward III, Goodyear LJ, Tong Q: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. AGING. 2009, 1: 771-783.PubMedCentralPubMed
38.
go back to reference Minami S, Ohtani-Fujita N, Igata E, Tamaki T, Sakai T: Molecular cloning and characterization of the human p27Kip1 gene promoter. FEBS Lett. 1997, 411: 1-6. 10.1016/S0014-5793(97)00660-1.CrossRefPubMed Minami S, Ohtani-Fujita N, Igata E, Tamaki T, Sakai T: Molecular cloning and characterization of the human p27Kip1 gene promoter. FEBS Lett. 1997, 411: 1-6. 10.1016/S0014-5793(97)00660-1.CrossRefPubMed
39.
go back to reference Hsu TC, Nair R, Tulsian P, Camalier CE, Hegamyer GA, Young MR, Colburn NH: Transformation nonresponsive cells owe their resistance to lack of p65/nuclear factor-κB activation. Cancer Res. 2001, 61: 4160-4168.PubMed Hsu TC, Nair R, Tulsian P, Camalier CE, Hegamyer GA, Young MR, Colburn NH: Transformation nonresponsive cells owe their resistance to lack of p65/nuclear factor-κB activation. Cancer Res. 2001, 61: 4160-4168.PubMed
40.
go back to reference Vidal A, S. Millard S, Miller JP, Koff A: Rho activity can alter the translation of p27 mRNA and Is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem. 2002, 277: 16433-16440. 10.1074/jbc.M112090200.CrossRefPubMed Vidal A, S. Millard S, Miller JP, Koff A: Rho activity can alter the translation of p27 mRNA and Is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem. 2002, 277: 16433-16440. 10.1074/jbc.M112090200.CrossRefPubMed
Metadata
Title
Upstream molecular signaling pathways of p27 (Kip1) expression in human breast cancer cells in vitro: differential effects of 4-hydroxytamoxifen and deficiency of either D-(+)-glucose or L-leucine
Author
Isao Eto
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2011
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-11-31

Other articles of this Issue 1/2011

Cancer Cell International 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine