Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2009

Open Access 01-12-2009 | Research article

Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts

Authors: Ryan P Hafen, David E Anderson, William S Cleveland, Ross Maciejewski, David S Ebert, Ahmad Abusalah, Mohamed Yakout, Mourad Ouzzani, Shaun J Grannis

Published in: BMC Medical Informatics and Decision Making | Issue 1/2009

Login to get access

Abstract

Background

Public health surveillance is the monitoring of data to detect and quantify unusual health events. Monitoring pre-diagnostic data, such as emergency department (ED) patient chief complaints, enables rapid detection of disease outbreaks. There are many sources of variation in such data; statistical methods need to accurately model them as a basis for timely and accurate disease outbreak methods.

Methods

Our new methods for modeling daily chief complaint counts are based on a seasonal-trend decomposition procedure based on loess (STL) and were developed using data from the 76 EDs of the Indiana surveillance program from 2004 to 2008. Square root counts are decomposed into inter-annual, yearly-seasonal, day-of-the-week, and random-error components. Using this decomposition method, we develop a new synoptic-scale (days to weeks) outbreak detection method and carry out a simulation study to compare detection performance to four well-known methods for nine outbreak scenarios.

Result

The components of the STL decomposition reveal insights into the variability of the Indiana ED data. Day-of-the-week components tend to peak Sunday or Monday, fall steadily to a minimum Thursday or Friday, and then rise to the peak. Yearly-seasonal components show seasonal influenza, some with bimodal peaks.
Some inter-annual components increase slightly due to increasing patient populations. A new outbreak detection method based on the decomposition modeling performs well with 90 days or more of data. Control limits were set empirically so that all methods had a specificity of 97%. STL had the largest sensitivity in all nine outbreak scenarios. The STL method also exhibited a well-behaved false positive rate when run on the data with no outbreaks injected.

Conclusion

The STL decomposition method for chief complaint counts leads to a rapid and accurate detection method for disease outbreaks, and requires only 90 days of historical data to be put into operation. The visualization tools that accompany the decomposition and outbreak methods provide much insight into patterns in the data, which is useful for surveillance operations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burkom H: Development, adaptation, and assessment of alerting algorithms for biosurveillance. Johns Hopkins APL Technical Digest. 2003, 24 (4): 335-342. Burkom H: Development, adaptation, and assessment of alerting algorithms for biosurveillance. Johns Hopkins APL Technical Digest. 2003, 24 (4): 335-342.
2.
go back to reference Burkom H, Murphy S, Shmueli G: Automated time series forecasting for biosurveillance. Stat in Med. 2007, 26 (22): 4202-4218. 10.1002/sim.2835.CrossRef Burkom H, Murphy S, Shmueli G: Automated time series forecasting for biosurveillance. Stat in Med. 2007, 26 (22): 4202-4218. 10.1002/sim.2835.CrossRef
4.
go back to reference Hutwagner L, Thompson W, Seeman G, Treadwell T: The bioterrorism preparedness and response Early Aberration Reporting System (EARS). J Urban Health. 2003, 80: i89-i96.PubMedPubMedCentral Hutwagner L, Thompson W, Seeman G, Treadwell T: The bioterrorism preparedness and response Early Aberration Reporting System (EARS). J Urban Health. 2003, 80: i89-i96.PubMedPubMedCentral
5.
go back to reference Wallenstein S, Naus J: Scan statistics for temporal surveillance for biologic terrorism. MMWR Morb Mortal Wkly Rep. 2004, 53 Suppl: 74-78. Wallenstein S, Naus J: Scan statistics for temporal surveillance for biologic terrorism. MMWR Morb Mortal Wkly Rep. 2004, 53 Suppl: 74-78.
6.
go back to reference Brillman J, Burr T, Forslund D, Joyce E, Picard R, Umland E: Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC Med Inform Decis Mak. 2005, 5 (4): 1-14. Brillman J, Burr T, Forslund D, Joyce E, Picard R, Umland E: Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC Med Inform Decis Mak. 2005, 5 (4): 1-14.
7.
go back to reference Dafni U, Tsiodras S, Panagiotakos D, Gkolfinopoulou K, Kouvatseas G, Tsourti Z, Saroglou G: Algorithm for statistical detection of peaks – syndromic surveillance system for the Athens 2004 olympic games. MMWR Morb Mortal Wkly Rep. 2004, 53: 86-94. Dafni U, Tsiodras S, Panagiotakos D, Gkolfinopoulou K, Kouvatseas G, Tsourti Z, Saroglou G: Algorithm for statistical detection of peaks – syndromic surveillance system for the Athens 2004 olympic games. MMWR Morb Mortal Wkly Rep. 2004, 53: 86-94.
8.
go back to reference Kleinman K, Abrams A, Kulldorff M, Platt R: A model-adjusted space-time scan statistic with an application to syndromic surveillance. Epidemiology and Infection. 2005, 133 (03): 409-419. 10.1017/S0950268804003528.CrossRefPubMedPubMedCentral Kleinman K, Abrams A, Kulldorff M, Platt R: A model-adjusted space-time scan statistic with an application to syndromic surveillance. Epidemiology and Infection. 2005, 133 (03): 409-419. 10.1017/S0950268804003528.CrossRefPubMedPubMedCentral
9.
go back to reference Wong W, Moore A, Cooper G, Wagner M: Rule-based anomaly pattern detection for detecting disease outbreaks. Proc. 18th Nat. Conf. on Artificial Intelligence. 1999, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press, 2002: 217-223. Wong W, Moore A, Cooper G, Wagner M: Rule-based anomaly pattern detection for detecting disease outbreaks. Proc. 18th Nat. Conf. on Artificial Intelligence. 1999, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press, 2002: 217-223.
10.
go back to reference Burr T, Graves T, Klamann R, Michalak S, Picard R, Hengartner N: Accounting for seasonal patterns in syndromic surveillance data for outbreak detection. BMC Med Inform Decis Mak. 2006, 6: 40-10.1186/1472-6947-6-40.CrossRefPubMedPubMedCentral Burr T, Graves T, Klamann R, Michalak S, Picard R, Hengartner N: Accounting for seasonal patterns in syndromic surveillance data for outbreak detection. BMC Med Inform Decis Mak. 2006, 6: 40-10.1186/1472-6947-6-40.CrossRefPubMedPubMedCentral
11.
go back to reference Stroup D, Wharton M, Kafadar K, Dean A: Evaluation of a method for detecting aberrations in public health surveillance data. Am J Epidemiol. 1993, 137 (3): 373-380.PubMed Stroup D, Wharton M, Kafadar K, Dean A: Evaluation of a method for detecting aberrations in public health surveillance data. Am J Epidemiol. 1993, 137 (3): 373-380.PubMed
12.
go back to reference Hutwagner L, Maloney E, Bean N, Slutsker L, Martin S: Using laboratory-based surveillance data for prevention: an algorithm for detecting salmonella outbreaks. Emerg Infect Dis. 1997, 3: 395-400.CrossRefPubMedPubMedCentral Hutwagner L, Maloney E, Bean N, Slutsker L, Martin S: Using laboratory-based surveillance data for prevention: an algorithm for detecting salmonella outbreaks. Emerg Infect Dis. 1997, 3: 395-400.CrossRefPubMedPubMedCentral
13.
go back to reference Farrington C, Andrews N, Beale A, Catchpole M: A statistical algorithm for the early detection of outbreaks of infectious disease. J R Slat Soc Ser A Stat Soc. 1996, 159 (3): 547-563. 10.2307/2983331.CrossRef Farrington C, Andrews N, Beale A, Catchpole M: A statistical algorithm for the early detection of outbreaks of infectious disease. J R Slat Soc Ser A Stat Soc. 1996, 159 (3): 547-563. 10.2307/2983331.CrossRef
14.
go back to reference Stern L, Lightfoot D: Automated outbreak detection: a quantitative retrospective analysis. Epidemiol Infect. 1999, 122 (01): 103-110. 10.1017/S0950268898001939.CrossRefPubMedPubMedCentral Stern L, Lightfoot D: Automated outbreak detection: a quantitative retrospective analysis. Epidemiol Infect. 1999, 122 (01): 103-110. 10.1017/S0950268898001939.CrossRefPubMedPubMedCentral
15.
go back to reference Simonsen L: The impact of influenza epidemics on mortality: introducing a severity index. American Journal of Public Health. 1997, 87 (12): 1944-1950. 10.2105/AJPH.87.12.1944.CrossRefPubMedPubMedCentral Simonsen L: The impact of influenza epidemics on mortality: introducing a severity index. American Journal of Public Health. 1997, 87 (12): 1944-1950. 10.2105/AJPH.87.12.1944.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Grannis S, Wade M, Gibson J, Overhage J: The Indiana public health emergency surveillance system: Ongoing progress, early findings, and future directions. AMIA Annu Symp Proc. 2006, 304-308. Grannis S, Wade M, Gibson J, Overhage J: The Indiana public health emergency surveillance system: Ongoing progress, early findings, and future directions. AMIA Annu Symp Proc. 2006, 304-308.
18.
go back to reference Olszewski R: Bayesian classification of triage diagnoses for the early detection of epidemics. Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference. 2003, Menlo Park, CA: AAAI, 412-7. Olszewski R: Bayesian classification of triage diagnoses for the early detection of epidemics. Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference. 2003, Menlo Park, CA: AAAI, 412-7.
19.
go back to reference Cleveland R, Cleveland W, McRae J, Terpenning I: STL: A seasonal-trend decomposition procedure based on loess (with discussion). J Offic Stat. 1990, 6: 3-73. Cleveland R, Cleveland W, McRae J, Terpenning I: STL: A seasonal-trend decomposition procedure based on loess (with discussion). J Offic Stat. 1990, 6: 3-73.
20.
go back to reference Franz D, Jahrling P, Friedlander A, McClain D, Hoover D, Bryne W, Pavlin J, Christopher G, Eitzen E: Clinical recognition and management of patients exposed to biological warfare agents. JAMA. 1997, 278 (5): 399-411. 10.1001/jama.278.5.399.CrossRefPubMed Franz D, Jahrling P, Friedlander A, McClain D, Hoover D, Bryne W, Pavlin J, Christopher G, Eitzen E: Clinical recognition and management of patients exposed to biological warfare agents. JAMA. 1997, 278 (5): 399-411. 10.1001/jama.278.5.399.CrossRefPubMed
21.
22.
go back to reference Cleveland W, Devlin S: Locally weighted regression: an approach to regression analysis by local fitting. JASA. 1988, 83 (403): 596-610.CrossRef Cleveland W, Devlin S: Locally weighted regression: an approach to regression analysis by local fitting. JASA. 1988, 83 (403): 596-610.CrossRef
23.
go back to reference Johnson NL, Kotz S, Kemp A: Univariate Discrete Distributions. 1992, New York: Wiley Johnson NL, Kotz S, Kemp A: Univariate Discrete Distributions. 1992, New York: Wiley
24.
go back to reference Jackson M, Baer A, Painter I, Duchin J: A simulation study comparing aberration detection algorithms for syndromic surveillance. BMC Med Inform Decis Mak. 2007, 7: 6-6. 10.1186/1472-6947-7-6.CrossRefPubMedPubMedCentral Jackson M, Baer A, Painter I, Duchin J: A simulation study comparing aberration detection algorithms for syndromic surveillance. BMC Med Inform Decis Mak. 2007, 7: 6-6. 10.1186/1472-6947-7-6.CrossRefPubMedPubMedCentral
25.
go back to reference Mandl K, Reis B, Cassa C: Measuring outbreak-detection performance by using controlled feature set simulations. MMWR Morb Mortal Wkly Rep. 2004, 53: 130-6. Mandl K, Reis B, Cassa C: Measuring outbreak-detection performance by using controlled feature set simulations. MMWR Morb Mortal Wkly Rep. 2004, 53: 130-6.
26.
go back to reference Sartwell P: The distribution of incubation periods of infectious disease. Am J Hyg. 1950, 51 (3): 310-318.PubMed Sartwell P: The distribution of incubation periods of infectious disease. Am J Hyg. 1950, 51 (3): 310-318.PubMed
27.
go back to reference Meselson M, Guillemin J, Hugh-Jones M, Langmuir A, Popova I, Shelokov A, Yampolskaya O: The Sverdlovsk anthrax outbreak of 1979. Science. 1994, 266 (5188): 1202-1208. 10.1126/science.7973702.CrossRefPubMed Meselson M, Guillemin J, Hugh-Jones M, Langmuir A, Popova I, Shelokov A, Yampolskaya O: The Sverdlovsk anthrax outbreak of 1979. Science. 1994, 266 (5188): 1202-1208. 10.1126/science.7973702.CrossRefPubMed
Metadata
Title
Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts
Authors
Ryan P Hafen
David E Anderson
William S Cleveland
Ross Maciejewski
David S Ebert
Ahmad Abusalah
Mohamed Yakout
Mourad Ouzzani
Shaun J Grannis
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2009
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-9-21

Other articles of this Issue 1/2009

BMC Medical Informatics and Decision Making 1/2009 Go to the issue