Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2008

Open Access 01-12-2008 | Research article

Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy

Authors: Jeffrey S Barrett, John T Mondick, Mahesh Narayan, Kalpana Vijayakumar, Sundararajan Vijayakumar

Published in: BMC Medical Informatics and Decision Making | Issue 1/2008

Login to get access

Abstract

Background

Decision analysis in hospital-based settings is becoming more common place. The application of modeling and simulation approaches has likewise become more prevalent in order to support decision analytics. With respect to clinical decision making at the level of the patient, modeling and simulation approaches have been used to study and forecast treatment options, examine and rate caregiver performance and assign resources (staffing, beds, patient throughput). There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the often limited data available to guide dosing and manage patient response. We have employed nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and visualization tools to create drug-specific decision support systems that utilize individualized patient data from our electronic medical records systems.

Methods

Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs are generated based on historical data in relevant pediatric populations or from adults when no pediatric data is available. These models are re-executed with individual patient data allowing for patient-specific guidance via a Bayesian forecasting approach. The models are called and executed in an interactive manner through our web-based dashboard environment which interfaces to the hospital's electronic medical records system.

Results

The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-effect model to project patient response to specific dosing events. Projected plasma concentrations are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue therapy with leucovorin. These data are also viewable against common biomarkers used to assess patient safety (e.g., vital signs and plasma creatinine levels). As additional data become available via therapeutic drug monitoring, the model is re-executed and projections are revised.

Conclusion

The management of pediatric pharmacotherapy can be greatly enhanced via the immediate feedback provided by decision analytics which incorporate the current, best-available knowledge pertaining to dose-exposure and exposure-response relationships, especially for narrow therapeutic agents that are difficult to manage.
Appendix
Available only for authorised users
Literature
1.
go back to reference IOM: Building a Better Delivery system: A New Engineering/Health Care Partnership. 2005, National Academy of Engineering and Institute of Medicine IOM: Building a Better Delivery system: A New Engineering/Health Care Partnership. 2005, National Academy of Engineering and Institute of Medicine
2.
go back to reference IOM: Report: Patient safety – achieving a new standard for care. Acad Emerg Med. 2005, 12 (10): 1011-2. IOM: Report: Patient safety – achieving a new standard for care. Acad Emerg Med. 2005, 12 (10): 1011-2.
3.
go back to reference Ferri F: User modeling techniques as support in the clinical decision-making process. Medinfo. 1995, 8 (Pt 2): 926-30.PubMed Ferri F: User modeling techniques as support in the clinical decision-making process. Medinfo. 1995, 8 (Pt 2): 926-30.PubMed
4.
go back to reference Gardner SN: Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol. 2002, 214 (2): 181-207. 10.1006/jtbi.2001.2459.CrossRefPubMed Gardner SN: Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol. 2002, 214 (2): 181-207. 10.1006/jtbi.2001.2459.CrossRefPubMed
5.
go back to reference Starr JM, Campbell A: Mathematical modeling of Clostridium difficile infection. Clin Microbiol Infect. 2001, 7 (8): 432-7. 10.1046/j.1198-743x.2001.00291.x.CrossRefPubMed Starr JM, Campbell A: Mathematical modeling of Clostridium difficile infection. Clin Microbiol Infect. 2001, 7 (8): 432-7. 10.1046/j.1198-743x.2001.00291.x.CrossRefPubMed
6.
go back to reference Broderick A: Nosocomial infections: validation of surveillance and computer modeling to identify patients at risk. Am J Epidemiol. 1990, 131 (4): 734-42.PubMed Broderick A: Nosocomial infections: validation of surveillance and computer modeling to identify patients at risk. Am J Epidemiol. 1990, 131 (4): 734-42.PubMed
7.
go back to reference Raboud J: Modeling transmission of methicillin-resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol. 2005, 26 (7): 607-15. 10.1086/502589.CrossRefPubMed Raboud J: Modeling transmission of methicillin-resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol. 2005, 26 (7): 607-15. 10.1086/502589.CrossRefPubMed
8.
go back to reference Shaw B, Marshall AH: Modeling the health care costs of geriatric inpatients. IEEE Trans Inf Technol Biomed. 2006, 10 (3): 526-32. 10.1109/TITB.2005.863821.CrossRefPubMed Shaw B, Marshall AH: Modeling the health care costs of geriatric inpatients. IEEE Trans Inf Technol Biomed. 2006, 10 (3): 526-32. 10.1109/TITB.2005.863821.CrossRefPubMed
9.
go back to reference Graves N, Nicholls TM, Morris AJ: Modeling the costs of hospital-acquired infections in New Zealand. Infect Control Hosp Epidemiol. 2003, 24 (3): 214-23. 10.1086/502192.CrossRefPubMed Graves N, Nicholls TM, Morris AJ: Modeling the costs of hospital-acquired infections in New Zealand. Infect Control Hosp Epidemiol. 2003, 24 (3): 214-23. 10.1086/502192.CrossRefPubMed
10.
go back to reference Anderson JG: Modeling the costs and outcomes of cardiovascular surgery. Health Care Manag Sci. 2002, 5 (2): 103-11. 10.1023/A:1014472731382.CrossRefPubMed Anderson JG: Modeling the costs and outcomes of cardiovascular surgery. Health Care Manag Sci. 2002, 5 (2): 103-11. 10.1023/A:1014472731382.CrossRefPubMed
11.
go back to reference Hung GR: Computer modeling of patient flow in a pediatric emergency department using discrete event simulation. Pediatr Emerg Care. 2007, 23 (1): 5-10. 10.1097/PEC.0b013e31802c611e.CrossRefPubMed Hung GR: Computer modeling of patient flow in a pediatric emergency department using discrete event simulation. Pediatr Emerg Care. 2007, 23 (1): 5-10. 10.1097/PEC.0b013e31802c611e.CrossRefPubMed
12.
go back to reference Costa AX: Mathematical modelling and simulation for planning critical care capacity. Anaesthesia. 2003, 58 (4): 320-7. 10.1046/j.1365-2044.2003.03042.x.CrossRefPubMed Costa AX: Mathematical modelling and simulation for planning critical care capacity. Anaesthesia. 2003, 58 (4): 320-7. 10.1046/j.1365-2044.2003.03042.x.CrossRefPubMed
13.
go back to reference Koizumi N, Kuno E, Smith TE: Modeling patient flows using a queuing network with blocking. Health Care Manag Sci. 2005, 8 (1): 49-60. 10.1007/s10729-005-5216-3.CrossRefPubMedPubMedCentral Koizumi N, Kuno E, Smith TE: Modeling patient flows using a queuing network with blocking. Health Care Manag Sci. 2005, 8 (1): 49-60. 10.1007/s10729-005-5216-3.CrossRefPubMedPubMedCentral
14.
go back to reference Isken MW, Rajagopalan B: Data mining to support simulation modeling of patient flow in hospitals. J Med Syst. 2002, 26 (2): 179-97. 10.1023/A:1014814111524.CrossRefPubMed Isken MW, Rajagopalan B: Data mining to support simulation modeling of patient flow in hospitals. J Med Syst. 2002, 26 (2): 179-97. 10.1023/A:1014814111524.CrossRefPubMed
15.
go back to reference Paul JA: Transient modeling in simulation of hospital operations for emergency response. Prehospital Disaster Med. 2006, 21 (4): 223-36.CrossRefPubMed Paul JA: Transient modeling in simulation of hospital operations for emergency response. Prehospital Disaster Med. 2006, 21 (4): 223-36.CrossRefPubMed
16.
17.
18.
go back to reference Connelly LG, Bair AE: Discrete event simulation of emergency department activity: a platform for system-level operations research. Acad Emerg Med. 2004, 11 (11): 1177-85.CrossRefPubMed Connelly LG, Bair AE: Discrete event simulation of emergency department activity: a platform for system-level operations research. Acad Emerg Med. 2004, 11 (11): 1177-85.CrossRefPubMed
19.
go back to reference Slovensky DJ, Morin B: Learning through simulation: the next dimension in quality improvement. Qual Manag Health Care. 1997, 5 (3): 72-9.CrossRefPubMed Slovensky DJ, Morin B: Learning through simulation: the next dimension in quality improvement. Qual Manag Health Care. 1997, 5 (3): 72-9.CrossRefPubMed
20.
go back to reference Lucas CE: Mathematical modeling to define optimum operating room staffing needs for trauma centers. J Am Coll Surg. 2001, 192 (5): 559-65. 10.1016/S1072-7515(01)00829-8.CrossRefPubMed Lucas CE: Mathematical modeling to define optimum operating room staffing needs for trauma centers. J Am Coll Surg. 2001, 192 (5): 559-65. 10.1016/S1072-7515(01)00829-8.CrossRefPubMed
21.
go back to reference Verduijn M: Modeling length of stay as an optimized two-class prediction problem. Methods Inf Med. 2007, 46 (3): 352-9.PubMed Verduijn M: Modeling length of stay as an optimized two-class prediction problem. Methods Inf Med. 2007, 46 (3): 352-9.PubMed
22.
go back to reference Chien JY: Pharmacokinetics/Pharmacodynamics and the stages of drug development: role of modeling and simulation. Aaps J. 2005, 7 (3): E544-59. 10.1208/aapsj070355.CrossRefPubMedPubMedCentral Chien JY: Pharmacokinetics/Pharmacodynamics and the stages of drug development: role of modeling and simulation. Aaps J. 2005, 7 (3): E544-59. 10.1208/aapsj070355.CrossRefPubMedPubMedCentral
23.
go back to reference Gobburu JV, Sekar VJ: Application of modeling and simulation to integrate clinical pharmacology knowledge across a new drug application. Int J Clin Pharmacol Ther. 2002, 40 (7): 281-8.CrossRefPubMed Gobburu JV, Sekar VJ: Application of modeling and simulation to integrate clinical pharmacology knowledge across a new drug application. Int J Clin Pharmacol Ther. 2002, 40 (7): 281-8.CrossRefPubMed
24.
25.
go back to reference Bondareva IB: Nonparametric population modeling of valproate pharmacokinetics in epileptic patients using routine serum monitoring data: implications for dosage. J Clin Pharm Ther. 2004, 29 (2): 105-20. 10.1111/j.1365-2710.2003.00538.x.CrossRefPubMed Bondareva IB: Nonparametric population modeling of valproate pharmacokinetics in epileptic patients using routine serum monitoring data: implications for dosage. J Clin Pharm Ther. 2004, 29 (2): 105-20. 10.1111/j.1365-2710.2003.00538.x.CrossRefPubMed
26.
go back to reference Jelliffe R: Goal-oriented, model-based drug regimens: setting individualized goals for each patient. Ther Drug Monit. 2000, 22 (3): 325-9. 10.1097/00007691-200006000-00016.CrossRefPubMed Jelliffe R: Goal-oriented, model-based drug regimens: setting individualized goals for each patient. Ther Drug Monit. 2000, 22 (3): 325-9. 10.1097/00007691-200006000-00016.CrossRefPubMed
27.
go back to reference Agresti A: A survey of models for repeated ordered categorical response data. Stat Med. 1989, 8 (10): 1209-24. 10.1002/sim.4780081005.CrossRefPubMed Agresti A: A survey of models for repeated ordered categorical response data. Stat Med. 1989, 8 (10): 1209-24. 10.1002/sim.4780081005.CrossRefPubMed
28.
go back to reference Yano I, Beal SL, Sheiner LB: The need for mixed-effects modeling with population dichotomous data. J Pharmacokinet Pharmacodyn. 2001, 28 (4): 389-412. 10.1023/A:1011586814601.CrossRefPubMed Yano I, Beal SL, Sheiner LB: The need for mixed-effects modeling with population dichotomous data. J Pharmacokinet Pharmacodyn. 2001, 28 (4): 389-412. 10.1023/A:1011586814601.CrossRefPubMed
29.
go back to reference Borsi J, Revesz T, Schuler D: [Prognostic significance of systemic clearance of methotrexate in acute lymphoid leukemia in childhood]. Orv Hetil. 1986, 127 (8): 439-42.PubMed Borsi J, Revesz T, Schuler D: [Prognostic significance of systemic clearance of methotrexate in acute lymphoid leukemia in childhood]. Orv Hetil. 1986, 127 (8): 439-42.PubMed
30.
go back to reference Evans WE: Methotrexate systemic clearance influences probability of relapse in children with standard-risk acute lymphocytic leukaemia. Lancet. 1984, 1 (8373): 359-62. 10.1016/S0140-6736(84)90411-2.CrossRefPubMed Evans WE: Methotrexate systemic clearance influences probability of relapse in children with standard-risk acute lymphocytic leukaemia. Lancet. 1984, 1 (8373): 359-62. 10.1016/S0140-6736(84)90411-2.CrossRefPubMed
31.
go back to reference Evans WE: Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med. 1986, 314 (8): 471-7.CrossRefPubMed Evans WE: Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med. 1986, 314 (8): 471-7.CrossRefPubMed
32.
go back to reference Goldie JH, Price LA, Harrap KR: Methotrexate toxicity: correlation with duration of administration, plasma levels, dose and excretion pattern. Eur J Cancer. 1972, 8 (4): 409-14.CrossRefPubMed Goldie JH, Price LA, Harrap KR: Methotrexate toxicity: correlation with duration of administration, plasma levels, dose and excretion pattern. Eur J Cancer. 1972, 8 (4): 409-14.CrossRefPubMed
33.
go back to reference Tattersall MH, Brown B, Frei E: The reversal of methotrexate toxicity by thymidine with maintenance of antitumour effects. Nature. 1975, 253 (5488): 198-200. 10.1038/253198a0.CrossRefPubMed Tattersall MH, Brown B, Frei E: The reversal of methotrexate toxicity by thymidine with maintenance of antitumour effects. Nature. 1975, 253 (5488): 198-200. 10.1038/253198a0.CrossRefPubMed
34.
go back to reference Isacoff WH: Pharmacokinetics of high-dose methotrexate with citrovorum factor rescue. Cancer Treat Rep. 1977, 61 (9): 1665-74.PubMed Isacoff WH: Pharmacokinetics of high-dose methotrexate with citrovorum factor rescue. Cancer Treat Rep. 1977, 61 (9): 1665-74.PubMed
35.
go back to reference Stoller RG: Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977, 297 (12): 630-4.CrossRefPubMed Stoller RG: Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977, 297 (12): 630-4.CrossRefPubMed
36.
go back to reference Nirenberg A: High-dose methotrexate with citrovorum factor rescue: predictive value of serum methotrexate concentrations and corrective measures to avert toxicity. Cancer Treat Rep. 1977, 61 (5): 779-83.PubMed Nirenberg A: High-dose methotrexate with citrovorum factor rescue: predictive value of serum methotrexate concentrations and corrective measures to avert toxicity. Cancer Treat Rep. 1977, 61 (5): 779-83.PubMed
37.
go back to reference Perez C: Significance of the 48-hour plasma level in high-dose methotrexate regimens. Cancer Clin Trials. 1978, 1 (2): 107-11.PubMed Perez C: Significance of the 48-hour plasma level in high-dose methotrexate regimens. Cancer Clin Trials. 1978, 1 (2): 107-11.PubMed
38.
go back to reference Widemann BC: High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer. 2004, 100 (10): 2222-32. 10.1002/cncr.20255.CrossRefPubMed Widemann BC: High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer. 2004, 100 (10): 2222-32. 10.1002/cncr.20255.CrossRefPubMed
39.
go back to reference Piard C: A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2007, 60 (4): 609-20. 10.1007/s00280-006-0394-3.CrossRefPubMed Piard C: A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2007, 60 (4): 609-20. 10.1007/s00280-006-0394-3.CrossRefPubMed
40.
go back to reference Rousseau A: Bayesian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma. Clin Pharmacokinet. 2002, 41 (13): 1095-104. 10.2165/00003088-200241130-00006.CrossRefPubMed Rousseau A: Bayesian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma. Clin Pharmacokinet. 2002, 41 (13): 1095-104. 10.2165/00003088-200241130-00006.CrossRefPubMed
41.
go back to reference Odoul F: Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol. 1999, 13 (5): 595-604.CrossRefPubMed Odoul F: Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol. 1999, 13 (5): 595-604.CrossRefPubMed
42.
go back to reference Pignon T: Pharmacokinetics of high-dose methotrexate in adult osteogenic sarcoma. Cancer Chemother Pharmacol. 1994, 33 (5): 420-4. 10.1007/BF00686272.CrossRefPubMed Pignon T: Pharmacokinetics of high-dose methotrexate in adult osteogenic sarcoma. Cancer Chemother Pharmacol. 1994, 33 (5): 420-4. 10.1007/BF00686272.CrossRefPubMed
43.
go back to reference Bruno R: Dosage predictions in high-dose methotrexate infusions. Part 2: Bayesian estimation of methotrexate clearance. Cancer Drug Deliv. 1985, 2 (4): 277-83.CrossRefPubMed Bruno R: Dosage predictions in high-dose methotrexate infusions. Part 2: Bayesian estimation of methotrexate clearance. Cancer Drug Deliv. 1985, 2 (4): 277-83.CrossRefPubMed
44.
go back to reference Monjanel-Mouterde S: Bayesian population model of methotrexate to guide dosage adjustments for folate rescue in patients with breast cancer. J Clin Pharm Ther. 2002, 27 (3): 189-95. 10.1046/j.1365-2710.2002.00402.x.CrossRefPubMed Monjanel-Mouterde S: Bayesian population model of methotrexate to guide dosage adjustments for folate rescue in patients with breast cancer. J Clin Pharm Ther. 2002, 27 (3): 189-95. 10.1046/j.1365-2710.2002.00402.x.CrossRefPubMed
45.
go back to reference Bauer RJ, Guzy S, Ng C: A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. Aaps J. 2007, 9 (1): E60-83. 10.1208/aapsj0901007.CrossRefPubMedPubMedCentral Bauer RJ, Guzy S, Ng C: A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. Aaps J. 2007, 9 (1): E60-83. 10.1208/aapsj0901007.CrossRefPubMedPubMedCentral
46.
go back to reference Jelliffe RW: Adaptive control of drug dosage regimens: basic foundations, relevant issues, and clinical examples. Int J Biomed Comput. 1994, 36 (1–2): 1-23. 10.1016/0020-7101(94)90091-4.CrossRefPubMed Jelliffe RW: Adaptive control of drug dosage regimens: basic foundations, relevant issues, and clinical examples. Int J Biomed Comput. 1994, 36 (1–2): 1-23. 10.1016/0020-7101(94)90091-4.CrossRefPubMed
47.
go back to reference Pestotnik SL: Expert clinical decision support systems to enhance antimicrobial stewardship programs: insights from the society of infectious diseases pharmacists. Pharmacotherapy. 2005, 25 (8): 1116-25. 10.1592/phco.2005.25.8.1116.CrossRefPubMed Pestotnik SL: Expert clinical decision support systems to enhance antimicrobial stewardship programs: insights from the society of infectious diseases pharmacists. Pharmacotherapy. 2005, 25 (8): 1116-25. 10.1592/phco.2005.25.8.1116.CrossRefPubMed
48.
go back to reference Staes CJ: A case for manual entry of structured, coded laboratory data from multiple sources into an ambulatory electronic health record. J Am Med Inform Assoc. 2006, 13 (1): 12-5. 10.1197/jamia.M1813.CrossRefPubMedPubMedCentral Staes CJ: A case for manual entry of structured, coded laboratory data from multiple sources into an ambulatory electronic health record. J Am Med Inform Assoc. 2006, 13 (1): 12-5. 10.1197/jamia.M1813.CrossRefPubMedPubMedCentral
51.
go back to reference Brossette SE: A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance?. Am J Clin Pathol. 2006, 125 (1): 34-9. 10.1309/502A-UPR8-VE67-MBDE.CrossRefPubMed Brossette SE: A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance?. Am J Clin Pathol. 2006, 125 (1): 34-9. 10.1309/502A-UPR8-VE67-MBDE.CrossRefPubMed
53.
go back to reference Evans RS, Pestotnik SL: Applications of medical informatics in antibiotic therapy. Adv Exp Med Biol. 1994, 349: 87-96.CrossRefPubMed Evans RS, Pestotnik SL: Applications of medical informatics in antibiotic therapy. Adv Exp Med Biol. 1994, 349: 87-96.CrossRefPubMed
54.
go back to reference Evans RS: Improving empiric antibiotic selection using computer decision support. Arch Intern Med. 1994, 154 (8): 878-84. 10.1001/archinte.154.8.878.CrossRefPubMed Evans RS: Improving empiric antibiotic selection using computer decision support. Arch Intern Med. 1994, 154 (8): 878-84. 10.1001/archinte.154.8.878.CrossRefPubMed
55.
go back to reference Pestotnik SL: Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med. 1996, 124 (10): 884-90.CrossRefPubMed Pestotnik SL: Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med. 1996, 124 (10): 884-90.CrossRefPubMed
Metadata
Title
Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy
Authors
Jeffrey S Barrett
John T Mondick
Mahesh Narayan
Kalpana Vijayakumar
Sundararajan Vijayakumar
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2008
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-8-6

Other articles of this Issue 1/2008

BMC Medical Informatics and Decision Making 1/2008 Go to the issue