Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2010

Open Access 01-12-2010 | Research article

Detecting the start of an influenza outbreak using exponentially weighted moving average charts

Authors: Stefan H Steiner, Kristina Grant, Michael Coory, Heath A Kelly

Published in: BMC Medical Informatics and Decision Making | Issue 1/2010

Login to get access

Abstract

Background

Influenza viruses cause seasonal outbreaks in temperate climates, usually during winter and early spring, and are endemic in tropical climates. The severity and length of influenza outbreaks vary from year to year. Quick and reliable detection of the start of an outbreak is needed to promote public health measures.

Methods

We propose the use of an exponentially weighted moving average (EWMA) control chart of laboratory confirmed influenza counts to detect the start and end of influenza outbreaks.

Results

The chart is shown to provide timely signals in an example application with seven years of data from Victoria, Australia.

Conclusions

The EWMA control chart could be applied in other applications to quickly detect influenza outbreaks.
Appendix
Available only for authorised users
Literature
1.
go back to reference Newall AT, Wood JG, Macintyre CR: Influenza-related hospitalisation and death in Australians aged 50 years and older. Vaccine. 2008, 26 (17): 2135-41. 10.1016/j.vaccine.2008.01.051.CrossRefPubMed Newall AT, Wood JG, Macintyre CR: Influenza-related hospitalisation and death in Australians aged 50 years and older. Vaccine. 2008, 26 (17): 2135-41. 10.1016/j.vaccine.2008.01.051.CrossRefPubMed
2.
go back to reference Kelly H, Carville K, Grant K, Jacoby P, Tran T, Barr I: Estimation of influenza vaccine effectiveness from routine surveillance data. PLoS One. 2009, 4 (3): e5079-10.1371/journal.pone.0005079.CrossRefPubMedPubMedCentral Kelly H, Carville K, Grant K, Jacoby P, Tran T, Barr I: Estimation of influenza vaccine effectiveness from routine surveillance data. PLoS One. 2009, 4 (3): e5079-10.1371/journal.pone.0005079.CrossRefPubMedPubMedCentral
3.
go back to reference Montgomery DC: Introduction to Statistical Quality Control. 2008, John Wiley and Sons, New York, 6 Montgomery DC: Introduction to Statistical Quality Control. 2008, John Wiley and Sons, New York, 6
4.
go back to reference Woodall WH: The Use of Control Charts in Health-Care and Public-Health Surveillance (with discussion). Journal of Quality Technology. 2006, 38: 89-134. Woodall WH: The Use of Control Charts in Health-Care and Public-Health Surveillance (with discussion). Journal of Quality Technology. 2006, 38: 89-134.
5.
go back to reference Tsui K-L, Chiu W, Gierlich P, Goldsman D, Liu X, Maschek T: A review of healthcare, public health and syndromic surveillance. Quality Engineering. 2008 online 1st October. 2008, 20 (4): 435-50. Tsui K-L, Chiu W, Gierlich P, Goldsman D, Liu X, Maschek T: A review of healthcare, public health and syndromic surveillance. Quality Engineering. 2008 online 1st October. 2008, 20 (4): 435-50.
7.
go back to reference Hashimoto S, Murakami Y, Taniguchi K, Nagai M: Detection of epidemics in their early stage through infectious disease surveillance. Int J Epidemiol. 2000, 29 (5): 905-10. 10.1093/ije/29.5.905.CrossRefPubMed Hashimoto S, Murakami Y, Taniguchi K, Nagai M: Detection of epidemics in their early stage through infectious disease surveillance. Int J Epidemiol. 2000, 29 (5): 905-10. 10.1093/ije/29.5.905.CrossRefPubMed
8.
go back to reference Viboud C, Boelle PY, Carrat F, Valleron AJ, Flahault A: Prediction of the spread of influenza epidemics by the method of analogues. Am J Epidemiol. 2003, 158 (10): 996-1006. 10.1093/aje/kwg239.CrossRefPubMed Viboud C, Boelle PY, Carrat F, Valleron AJ, Flahault A: Prediction of the spread of influenza epidemics by the method of analogues. Am J Epidemiol. 2003, 158 (10): 996-1006. 10.1093/aje/kwg239.CrossRefPubMed
9.
go back to reference Anderson E, Bock D, Frisen M: Modeling influenza incidence for the purpose of on-line monitoring. Statistical Methods in Medical Research. 17: 421-438. 10.1177/0962280206078986. Anderson E, Bock D, Frisen M: Modeling influenza incidence for the purpose of on-line monitoring. Statistical Methods in Medical Research. 17: 421-438. 10.1177/0962280206078986.
10.
go back to reference Muscatello DJ, Churches T, Kaldor J, Zheng W, Chiu C, Correll P, Jorm L: An automated, broad-based, near real-time public health surveillance system using presentations to hospital Emergency Departments in New South Wales, Australia. BMC Public Health. 2005, 22 (5): 141-10.1186/1471-2458-5-141. 15.CrossRef Muscatello DJ, Churches T, Kaldor J, Zheng W, Chiu C, Correll P, Jorm L: An automated, broad-based, near real-time public health surveillance system using presentations to hospital Emergency Departments in New South Wales, Australia. BMC Public Health. 2005, 22 (5): 141-10.1186/1471-2458-5-141. 15.CrossRef
11.
go back to reference Cowling BJ, Wong IO, Ho LM, Riley S, Leung GM: Methods for monitoring influenza surveillance data. Int J Epidemiol. 2006, 35 (5): 1314-21. 10.1093/ije/dyl162.CrossRefPubMed Cowling BJ, Wong IO, Ho LM, Riley S, Leung GM: Methods for monitoring influenza surveillance data. Int J Epidemiol. 2006, 35 (5): 1314-21. 10.1093/ije/dyl162.CrossRefPubMed
12.
go back to reference Toubiana L, Flahault A: A space-time criterion for early detection of epidemics of influenza-like-illness. Eur J Epidemiol. 1998, 14 (5): 465-70. 10.1023/A:1007481929237.CrossRefPubMed Toubiana L, Flahault A: A space-time criterion for early detection of epidemics of influenza-like-illness. Eur J Epidemiol. 1998, 14 (5): 465-70. 10.1023/A:1007481929237.CrossRefPubMed
13.
go back to reference Watts CG, Andrews RM, Druce JD, Kelly HA: Establishing thresholds for influenza surveillance in Victoria. Aust N Z J Public Health. 2003, 27 (4): 409-12. 10.1111/j.1467-842X.2003.tb00418.x.CrossRefPubMed Watts CG, Andrews RM, Druce JD, Kelly HA: Establishing thresholds for influenza surveillance in Victoria. Aust N Z J Public Health. 2003, 27 (4): 409-12. 10.1111/j.1467-842X.2003.tb00418.x.CrossRefPubMed
14.
go back to reference Muscatello DJ, Morton PM, Evans I, Gilmour R: Prospective surveillance of excess mortality due to influenza in New South Wales. Communicable Diseases Intelligence. 2009, 32 (4): Muscatello DJ, Morton PM, Evans I, Gilmour R: Prospective surveillance of excess mortality due to influenza in New South Wales. Communicable Diseases Intelligence. 2009, 32 (4):
15.
go back to reference Department of Human Services: Rural Infection Control Practice Group. Health (Infectious Disease) Regulations. Melbourne RICPRAC. 2001, Report No.: Policy no. 7.1 Contract No.: Document Number|. Department of Human Services: Rural Infection Control Practice Group. Health (Infectious Disease) Regulations. Melbourne RICPRAC. 2001, Report No.: Policy no. 7.1 Contract No.: Document Number|.
16.
go back to reference Clothier H, Turner J, Hampson A, Kelly H: Geographic representativeness for sentinel influenza surveillance: implications for routine surveillance and pandemic preparedness. Aust NZ J Public Health. 2006, 30: 337-341. 10.1111/j.1467-842X.2006.tb00846.x.CrossRef Clothier H, Turner J, Hampson A, Kelly H: Geographic representativeness for sentinel influenza surveillance: implications for routine surveillance and pandemic preparedness. Aust NZ J Public Health. 2006, 30: 337-341. 10.1111/j.1467-842X.2006.tb00846.x.CrossRef
17.
go back to reference Druce J, Tran T, Kelly H, Kaye M, Chibo D, Kostecki R: Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002-2003. J Med Virol. 2005, 75 (1): 122-9. 10.1002/jmv.20246.CrossRefPubMed Druce J, Tran T, Kelly H, Kaye M, Chibo D, Kostecki R: Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002-2003. J Med Virol. 2005, 75 (1): 122-9. 10.1002/jmv.20246.CrossRefPubMed
18.
go back to reference Lucas JM, Saccucci MS: Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics. 1990, 32: 1-12. 10.2307/1269835.CrossRef Lucas JM, Saccucci MS: Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics. 1990, 32: 1-12. 10.2307/1269835.CrossRef
19.
go back to reference Lombardo J, Burhom H, Elbert E, Magruder S, Lewis SH, Loschen W, Sari J, Sniegoski C, Wojcik R, Pavlin J: A systems overview of the Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II). J Urban Health. 2003, 80 (2 Suppl 1): i32-42.PubMedPubMedCentral Lombardo J, Burhom H, Elbert E, Magruder S, Lewis SH, Loschen W, Sari J, Sniegoski C, Wojcik R, Pavlin J: A systems overview of the Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II). J Urban Health. 2003, 80 (2 Suppl 1): i32-42.PubMedPubMedCentral
20.
go back to reference Steiner SH: Grouped Data Exponentially Weighted Moving Average Control Charts. Applied Statistics. 1998, 47 (203-216): Steiner SH: Grouped Data Exponentially Weighted Moving Average Control Charts. Applied Statistics. 1998, 47 (203-216):
Metadata
Title
Detecting the start of an influenza outbreak using exponentially weighted moving average charts
Authors
Stefan H Steiner
Kristina Grant
Michael Coory
Heath A Kelly
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2010
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-10-37

Other articles of this Issue 1/2010

BMC Medical Informatics and Decision Making 1/2010 Go to the issue