Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2009

Open Access 01-12-2009 | Research article

The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey

Authors: Hern Tze Tan, Rosliza Abdul Rahman, Siew Hua Gan, Ahmad Sukari Halim, Siti Asma' Hassan, Siti Amrah Sulaiman, Kirnpal-Kaur BS

Published in: BMC Complementary Medicine and Therapies | Issue 1/2009

Login to get access

Abstract

Background

Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey.

Methods

Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates.

Results

By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%).

Conclusion

Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia.
Appendix
Available only for authorised users
Literature
1.
go back to reference White JW, Subers MH, Schepartz AI: The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta. 1963, 73: 57-70. 10.1016/0006-3002(63)90359-7.CrossRefPubMed White JW, Subers MH, Schepartz AI: The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta. 1963, 73: 57-70. 10.1016/0006-3002(63)90359-7.CrossRefPubMed
2.
go back to reference Bang LM, Buntting C, Molan PC: The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J Altern Complement Med. 2003, 9 (2): 267-273. 10.1089/10755530360623383.CrossRefPubMed Bang LM, Buntting C, Molan PC: The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J Altern Complement Med. 2003, 9 (2): 267-273. 10.1089/10755530360623383.CrossRefPubMed
3.
go back to reference Molan PC: The antibacterial nature of honey. 1. The nature of the antibacterial activity. Bee World. 1992, 73 (1): 5-28.CrossRef Molan PC: The antibacterial nature of honey. 1. The nature of the antibacterial activity. Bee World. 1992, 73 (1): 5-28.CrossRef
4.
go back to reference Russell KM, Molan PC, Wilkins AL, Holland PT: The identification of some antibacterial constituents of New Zealand manuka honey. J Agric Food Chem. 1988, 38: 10-13. 10.1021/jf00091a002.CrossRef Russell KM, Molan PC, Wilkins AL, Holland PT: The identification of some antibacterial constituents of New Zealand manuka honey. J Agric Food Chem. 1988, 38: 10-13. 10.1021/jf00091a002.CrossRef
5.
go back to reference Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MNC, Manley-Harris M, Snow MJ: Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2008, 343 (4): 651-659. 10.1016/j.carres.2007.12.011.CrossRefPubMed Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MNC, Manley-Harris M, Snow MJ: Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2008, 343 (4): 651-659. 10.1016/j.carres.2007.12.011.CrossRefPubMed
6.
go back to reference Mavric E, Wittmann S, Barth G, Henle T: Identification and quantification of methylglyoxal as the dominant antibacterial constituent of manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Foods Res. 2008, 52 (4): 483-489. 10.1002/mnfr.200700282.CrossRef Mavric E, Wittmann S, Barth G, Henle T: Identification and quantification of methylglyoxal as the dominant antibacterial constituent of manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Foods Res. 2008, 52 (4): 483-489. 10.1002/mnfr.200700282.CrossRef
7.
go back to reference Blair SE, Carter DA: The potential for honey in the management of wounds and infections. J Australian Infect Control. 2005, 10 (1): 24-31.CrossRef Blair SE, Carter DA: The potential for honey in the management of wounds and infections. J Australian Infect Control. 2005, 10 (1): 24-31.CrossRef
8.
go back to reference Halcón L, Milkus K: Staphylococcus aureus and wounds: a review of tea tree oil as a promising antimicrobial. Am J Infect Control. 2004, 32: 402-408. 10.1016/j.ajic.2003.12.008.CrossRefPubMed Halcón L, Milkus K: Staphylococcus aureus and wounds: a review of tea tree oil as a promising antimicrobial. Am J Infect Control. 2004, 32: 402-408. 10.1016/j.ajic.2003.12.008.CrossRefPubMed
9.
go back to reference Nasser S, Mabrouk A, Maher A: Colonization of burn wounds in Ain Shams University burn unit. Burns. 2003, 29: 229-233. 10.1016/S0305-4179(02)00285-1.CrossRefPubMed Nasser S, Mabrouk A, Maher A: Colonization of burn wounds in Ain Shams University burn unit. Burns. 2003, 29: 229-233. 10.1016/S0305-4179(02)00285-1.CrossRefPubMed
10.
go back to reference Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN: Prevalence of metallo-b-lactamase among Pseudomonas aeruginosa and Actinobacter baumanii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns. 2005, 31: 707-710. 10.1016/j.burns.2005.02.017.CrossRefPubMed Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN: Prevalence of metallo-b-lactamase among Pseudomonas aeruginosa and Actinobacter baumanii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns. 2005, 31: 707-710. 10.1016/j.burns.2005.02.017.CrossRefPubMed
11.
12.
go back to reference Al-Jabri AA: Honey, milk and antibiotics. Afr J Biotechnol. 2005, 4 (13): 1580-1587. Al-Jabri AA: Honey, milk and antibiotics. Afr J Biotechnol. 2005, 4 (13): 1580-1587.
13.
go back to reference Ainul Hafiza AH, Yusof N, Maimon A: Potential of Malaysian local honey as an antibacterial agent. Sains Malaysiana. 2005, 34 (1): 17-20. Ainul Hafiza AH, Yusof N, Maimon A: Potential of Malaysian local honey as an antibacterial agent. Sains Malaysiana. 2005, 34 (1): 17-20.
14.
go back to reference Ghazali FC: Morphological characterization study of Malaysian honey - A VPSEM, EDX randomised attempt. Ann Microscopy. 2009, 9: 93-102. Ghazali FC: Morphological characterization study of Malaysian honey - A VPSEM, EDX randomised attempt. Ann Microscopy. 2009, 9: 93-102.
15.
go back to reference Tumin N, Halim NA, Shahjahan M, Noor Izani NJ, Sattar MA, Khan AH, Mohsin SSJ: Antibacterial activity of local Malaysian honey. Malaysian Journal of Pharmaceutical Sciences. 2005, 3 (2): 1-10. Tumin N, Halim NA, Shahjahan M, Noor Izani NJ, Sattar MA, Khan AH, Mohsin SSJ: Antibacterial activity of local Malaysian honey. Malaysian Journal of Pharmaceutical Sciences. 2005, 3 (2): 1-10.
16.
go back to reference Molan PC, Allen KL: The effect of gamma-irradiation on the antibacterial activity of honey. J Pharm Pharmacol. 1996, 48 (11): 1206-1209.CrossRefPubMed Molan PC, Allen KL: The effect of gamma-irradiation on the antibacterial activity of honey. J Pharm Pharmacol. 1996, 48 (11): 1206-1209.CrossRefPubMed
17.
go back to reference Postmes T, Bogaard van den AE, Hazen M: The sterilization of honey with cobalt 60 gamma radiation: a study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis. Experientia. 1995, 51: 986-989. 10.1007/BF01921753.CrossRefPubMed Postmes T, Bogaard van den AE, Hazen M: The sterilization of honey with cobalt 60 gamma radiation: a study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis. Experientia. 1995, 51: 986-989. 10.1007/BF01921753.CrossRefPubMed
18.
go back to reference Allen KL, Molan PC, Reid GM: A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol. 1991, 43 (12): 817-822.CrossRefPubMed Allen KL, Molan PC, Reid GM: A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol. 1991, 43 (12): 817-822.CrossRefPubMed
19.
20.
go back to reference Lusby PE, Coombes AL, Wilkinson JM: Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res. 2005, 36 (5): 464-467. 10.1016/j.arcmed.2005.03.038.CrossRefPubMed Lusby PE, Coombes AL, Wilkinson JM: Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res. 2005, 36 (5): 464-467. 10.1016/j.arcmed.2005.03.038.CrossRefPubMed
21.
go back to reference Basson NJ, Grobler SR: Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms. BMC Complement Altern Med. 2008, 8: 41-10.1186/1472-6882-8-41.CrossRefPubMedPubMedCentral Basson NJ, Grobler SR: Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms. BMC Complement Altern Med. 2008, 8: 41-10.1186/1472-6882-8-41.CrossRefPubMedPubMedCentral
22.
go back to reference Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO: Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity. J Ethnopharmacol. 2001, 78: 119-127. 10.1016/S0378-8741(01)00307-5.CrossRefPubMed Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO: Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity. J Ethnopharmacol. 2001, 78: 119-127. 10.1016/S0378-8741(01)00307-5.CrossRefPubMed
23.
go back to reference Patton T, Barrett J, Brennan J, Moran N: Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. J Microbiol Methods. 2006, 64: 84-95. 10.1016/j.mimet.2005.04.007.CrossRefPubMed Patton T, Barrett J, Brennan J, Moran N: Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. J Microbiol Methods. 2006, 64: 84-95. 10.1016/j.mimet.2005.04.007.CrossRefPubMed
24.
go back to reference McGowan J: Resistance in nonfermenting Gram-negative bacteria: multidrug resistance to the maximum. Am J Med. 2006, 119 (6A): S29-36. 10.1016/j.amjmed.2006.03.014.CrossRefPubMed McGowan J: Resistance in nonfermenting Gram-negative bacteria: multidrug resistance to the maximum. Am J Med. 2006, 119 (6A): S29-36. 10.1016/j.amjmed.2006.03.014.CrossRefPubMed
25.
go back to reference Al-Jasser AM: Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: An increasing problem. Ann Clin Microbiol Antimicrob. 2006, 5: 23-10.1186/1476-0711-5-23.CrossRefPubMedPubMedCentral Al-Jasser AM: Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: An increasing problem. Ann Clin Microbiol Antimicrob. 2006, 5: 23-10.1186/1476-0711-5-23.CrossRefPubMedPubMedCentral
26.
go back to reference Gerischer U: Acinetobacter Molecular Biology. 2008, Norfolk: Caister Academic Press Gerischer U: Acinetobacter Molecular Biology. 2008, Norfolk: Caister Academic Press
27.
go back to reference Bassetti M, Righi E, Esposito S, Petrosillo N, Nicolini L: Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol. 2008, 3 (6): 649-660. 10.2217/17460913.3.6.649.CrossRefPubMed Bassetti M, Righi E, Esposito S, Petrosillo N, Nicolini L: Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol. 2008, 3 (6): 649-660. 10.2217/17460913.3.6.649.CrossRefPubMed
28.
go back to reference Haffejee IE, Moosa A: Honey in the treatment of infantile gastroenteritis. Br Med J. 1985, 290: 1866-1867. 10.1136/bmj.290.6485.1866.CrossRef Haffejee IE, Moosa A: Honey in the treatment of infantile gastroenteritis. Br Med J. 1985, 290: 1866-1867. 10.1136/bmj.290.6485.1866.CrossRef
29.
go back to reference Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M: Changes of microbial flora and wound colonization in burned patients. Burns. 2004, 30: 357-361. 10.1016/j.burns.2003.12.013.CrossRefPubMed Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M: Changes of microbial flora and wound colonization in burned patients. Burns. 2004, 30: 357-361. 10.1016/j.burns.2003.12.013.CrossRefPubMed
Metadata
Title
The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey
Authors
Hern Tze Tan
Rosliza Abdul Rahman
Siew Hua Gan
Ahmad Sukari Halim
Siti Asma' Hassan
Siti Amrah Sulaiman
Kirnpal-Kaur BS
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2009
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-9-34

Other articles of this Issue 1/2009

BMC Complementary Medicine and Therapies 1/2009 Go to the issue