Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2007

Open Access 01-12-2007 | Research article

Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides

Authors: Victor YC Ong, Benny KH Tan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2007

Login to get access

Abstract

Background

Plants containing compounds such as the isoflavonoids, with female hormone-like effects that bind to human estrogen receptors, are known. But none has been previously shown to have corresponding male hormone-like effects that interact with the human androgen receptor. Here, we report that the tree bark (cortex) of the Gutta-Percha tree Eucommia ulmoides possesses bimodal phytoandrogenic and hormone potentiating effects by lipidic components.

Methods

The extracts of E. ulmoides were tested using in-vitro reporter gene bioassays and in-vivo animal studies. Key compounds responsible for the steroidogenic effects were isolated and identified using solid phase extraction (SPE), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), gas chromatography-mass spectroscopy (GC-MS), electron spray ionisation-mass spectroscopy (ESI-MS) and nuclear magnetic resonance (NMR).

Results

The following bioactivities of E. ulmoides were found: (1) a phenomenal tripartite synergism exists between the sex steroid receptors (androgen and estrogen receptors), their cognate steroidal ligands and lipidic augmenters isolated from E. ulmoides, (2) phytoandrogenic activity of E. ulmoides was mediated by plant triterpenoids binding cognately to the androgen receptor (AR) ligand binding domain.

Conclusion

In addition to well-known phytoestrogens, the existence of phytoandrogens is reported in this study. Furthermore, a form of tripartite synergism between sex steroid receptors, sex hormones and plant-derived lipids is described for the first time. This could have contrasting clinical applications for hypogonadal- and hyperlipidaemic-related disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS: Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995, 16 (3): 271-321. 10.1210/er.16.3.271.PubMed Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS: Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995, 16 (3): 271-321. 10.1210/er.16.3.271.PubMed
2.
go back to reference Davison SL, Bell R: Androgen physiology. Semin Reprod Med. 2006, 24 (2): 71-7. 10.1055/s-2006-939565.CrossRefPubMed Davison SL, Bell R: Androgen physiology. Semin Reprod Med. 2006, 24 (2): 71-7. 10.1055/s-2006-939565.CrossRefPubMed
3.
go back to reference Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA, Miner JN, Diamond MI: The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci USA. 102 (28): 9802-7. 10.1073/pnas.0408819102. 2005 Jul 12 Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA, Miner JN, Diamond MI: The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci USA. 102 (28): 9802-7. 10.1073/pnas.0408819102. 2005 Jul 12
4.
go back to reference Pike AC, Brzozowski AM, Hubbard RE: A structural biologist's view of the oestrogen receptor. J Steroid Biochem Mol Biol. 74 (5): 261-8. 10.1016/S0960-0760(00)00102-3. 2000 Nov 30 Pike AC, Brzozowski AM, Hubbard RE: A structural biologist's view of the oestrogen receptor. J Steroid Biochem Mol Biol. 74 (5): 261-8. 10.1016/S0960-0760(00)00102-3. 2000 Nov 30
5.
go back to reference Usui T: Pharmaceutical prospects of phytoestrogens. Endocr J. 2006, 53 (1): 7-20. 10.1507/endocrj.53.7.CrossRefPubMed Usui T: Pharmaceutical prospects of phytoestrogens. Endocr J. 2006, 53 (1): 7-20. 10.1507/endocrj.53.7.CrossRefPubMed
6.
go back to reference World Health Organization Regional Office for the Western Pacific: Medicinal plants in China. Manila. 1989 World Health Organization Regional Office for the Western Pacific: Medicinal plants in China. Manila. 1989
7.
go back to reference Li SZ: Ben Cao Gang Mu. 1987, People's Republic of China: Ren Min Wei Sheng Chu Ban She Li SZ: Ben Cao Gang Mu. 1987, People's Republic of China: Ren Min Wei Sheng Chu Ban She
8.
go back to reference Yong EL, Tut TG, Ghadessy FJ, Prins G, Ratnam SS: Partial androgen insensitivity and correlations with the predicted three dimensional structure of the androgen receptor ligand-binding domain. Mol Cell Endocrinol. 1998, 137 (1): 41-50. 10.1016/S0303-7207(97)00229-3.CrossRefPubMed Yong EL, Tut TG, Ghadessy FJ, Prins G, Ratnam SS: Partial androgen insensitivity and correlations with the predicted three dimensional structure of the androgen receptor ligand-binding domain. Mol Cell Endocrinol. 1998, 137 (1): 41-50. 10.1016/S0303-7207(97)00229-3.CrossRefPubMed
9.
go back to reference Ong YC, Kolatkar PR, Yong EL: Androgen receptor mutations causing human androgen insensitivity syndromes show a key role of residue M807 in Helix 8-Helix 10 interactions and in receptor ligand-binding domain stability. Mol Hum Reprod. 2002, 8 (2): 101-8. 10.1093/molehr/8.2.101.CrossRefPubMed Ong YC, Kolatkar PR, Yong EL: Androgen receptor mutations causing human androgen insensitivity syndromes show a key role of residue M807 in Helix 8-Helix 10 interactions and in receptor ligand-binding domain stability. Mol Hum Reprod. 2002, 8 (2): 101-8. 10.1093/molehr/8.2.101.CrossRefPubMed
10.
go back to reference Ong YC: Structure-function of the androgen receptor (AR) and natural phytoandrogens for AR defects. PhD thesis. 2005, National University of Singapore, Department of Pharmacology Ong YC: Structure-function of the androgen receptor (AR) and natural phytoandrogens for AR defects. PhD thesis. 2005, National University of Singapore, Department of Pharmacology
11.
go back to reference Pehowich DJ, Gomes AV, Barnes JA: Fatty acid composition and possible health effects of coconut constituents. West Indian Med J. 2000, 49 (2): 128-33.PubMed Pehowich DJ, Gomes AV, Barnes JA: Fatty acid composition and possible health effects of coconut constituents. West Indian Med J. 2000, 49 (2): 128-33.PubMed
12.
go back to reference Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Janne OA: Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology. 1994, 135 (4): 1359-66. 10.1210/en.135.4.1359.PubMed Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Janne OA: Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology. 1994, 135 (4): 1359-66. 10.1210/en.135.4.1359.PubMed
13.
go back to reference Yun MR, Lee JY, Park HS, Heo HJ, Park JY, Bae SS, Hong KW, Sung SM, Kim CD: Oleic acid enhances vascular smooth muscle cell proliferation via phosphatidylinositol 3-kinase/Akt signaling pathway. Pharmacol Res. 2006 Mar 22, Yun MR, Lee JY, Park HS, Heo HJ, Park JY, Bae SS, Hong KW, Sung SM, Kim CD: Oleic acid enhances vascular smooth muscle cell proliferation via phosphatidylinositol 3-kinase/Akt signaling pathway. Pharmacol Res. 2006 Mar 22,
14.
go back to reference Kuller LH: Dietary fat and chronic diseases: epidemiologic overview. J Am Diet Assoc. 1997, 97 (7 Suppl): S9-15. 10.1016/S0002-8223(97)00724-4.CrossRefPubMed Kuller LH: Dietary fat and chronic diseases: epidemiologic overview. J Am Diet Assoc. 1997, 97 (7 Suppl): S9-15. 10.1016/S0002-8223(97)00724-4.CrossRefPubMed
Metadata
Title
Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides
Authors
Victor YC Ong
Benny KH Tan
Publication date
01-12-2007
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2007
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-7-3

Other articles of this Issue 1/2007

BMC Complementary Medicine and Therapies 1/2007 Go to the issue