Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2012

Open Access 01-12-2012 | Research article

Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities

Authors: Mathew Adamu, Vinasan Naidoo, Jacobus N Eloff

Published in: BMC Complementary Medicine and Therapies | Issue 1/2012

Login to get access

Abstract

Background

Diseases caused by microorganisms and parasites remain a major challenge globally and particularly in sub-Saharan Africa to man and livestock. Resistance to available antimicrobials and the high cost or unavailability of antimicrobials complicates matters. Many rural people use plants to treat these infections. Because some anthelmintics e.g. benzimidazoles also have good antifungal activity we examined the antifungal activity of extracts of 13 plant species used in southern Africa to treat gastrointestinal helminth infections in livestock and in man.

Methods

Antifungal activity of acetone leaf extracts was determined by serial microdilution with tetrazolium violet as growth indicator against Aspergillus fumigatus, Cryptococcus neoformans and Candida albicans. These pathogens play an important role in opportunistic infections of immune compromised patients. Cytotoxicity was determined by MTT cellular assay. Therapeutic indices were calculated and selectivity for different pathogens determined. We proposed a method to calculate the relation between microbicidal and microbistatic activities. Total activities for different plant species were calculated.

Results

On the whole, all 13 extracts had good antifungal activities with MIC values as low as 0.02 mg/mL for extracts of Clausena anisata against Aspergillus fumigatus a nd 0.04 mg/mL for extracts of Zanthoxylum capense, Clerodendrum glabrum, and Milletia grandis, against A. fumigatus. Clausena anisata extracts had the lowest cytotoxicity (LC50) of 0.17 mg/mL, a reasonable therapeutic index (2.65) against A. fumigatus. It also had selective activity against A. fumigatus, an overall fungicidal activity of 98% and a total activity of 3395 mL/g against A. fumigatus. This means that 1 g of acetone leaf extract can be diluted to 3.4 litres and it would still inhibit the growth. Clerodendrum glabrum, Zanthoxylum capense and Milletia grandis extracts also yielded promising results.

Conclusions

Some plant extracts used for treatment of parasitic infections also have good antifungal activity. Because it is much easier to isolate antifungal compounds by bioassay guided fractionation, this approach may facilitate the isolation of anthelmintic compounds from active plant extracts. The viability of this approach can be tested by isolating the antifungal compounds and then determining its anthelmintic activity. Some of these plant extracts may also be useful in combating fungal infections.
Appendix
Available only for authorised users
Literature
1.
go back to reference Isturiz RE, Carbon C: Antibiotic resistance in developing countries. Infect Cont Hosp Ep. 2000, 21: 394-397. 10.1086/501780.CrossRef Isturiz RE, Carbon C: Antibiotic resistance in developing countries. Infect Cont Hosp Ep. 2000, 21: 394-397. 10.1086/501780.CrossRef
2.
go back to reference McGaw LJ, Eloff JN: Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol. 2008, 119: 559-574. 10.1016/j.jep.2008.06.013.CrossRefPubMed McGaw LJ, Eloff JN: Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol. 2008, 119: 559-574. 10.1016/j.jep.2008.06.013.CrossRefPubMed
3.
go back to reference Suleiman MM, McGaw LJ, Naidoo V, Eloff JN: Evaluation of several tree species for activity against the animal fungal pathogen Aspergillus fumigatus. S Afr J Bot. 2009, 76: 64-71.CrossRef Suleiman MM, McGaw LJ, Naidoo V, Eloff JN: Evaluation of several tree species for activity against the animal fungal pathogen Aspergillus fumigatus. S Afr J Bot. 2009, 76: 64-71.CrossRef
4.
go back to reference Nchu F, Maniania NK, Toure A, Hassanali A, Eloff JN: The use of a semiochemical bait to enhance exposure of Amblyomma variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota: Hypocreales). Vet Parasitol. 2009, 160: 279-284. 10.1016/j.vetpar.2008.11.005.CrossRefPubMed Nchu F, Maniania NK, Toure A, Hassanali A, Eloff JN: The use of a semiochemical bait to enhance exposure of Amblyomma variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota: Hypocreales). Vet Parasitol. 2009, 160: 279-284. 10.1016/j.vetpar.2008.11.005.CrossRefPubMed
5.
go back to reference Eloff JN: Which extractant should be used for the screening and isolation of antimicrobial components from plants?. J Ethnopharmacol. 1998, 60: 1-8. 10.1016/S0378-8741(97)00123-2.CrossRefPubMed Eloff JN: Which extractant should be used for the screening and isolation of antimicrobial components from plants?. J Ethnopharmacol. 1998, 60: 1-8. 10.1016/S0378-8741(97)00123-2.CrossRefPubMed
6.
go back to reference Eloff JN: A sensitive and quick method to determine the minimum inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 60: 1-8. Eloff JN: A sensitive and quick method to determine the minimum inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 60: 1-8.
7.
go back to reference Bryant AT: Zulu Medicine and Medicine-Men. 1966, Cape Town: C. Struik Bryant AT: Zulu Medicine and Medicine-Men. 1966, Cape Town: C. Struik
8.
go back to reference Watt JM, Breyer-Brandwijk MG: The Medicinal and Poisonous Plants of Southern and Eastern Africa. 1962, London: Livingstone, 2 Watt JM, Breyer-Brandwijk MG: The Medicinal and Poisonous Plants of Southern and Eastern Africa. 1962, London: Livingstone, 2
9.
go back to reference Hutchings A, Scott AH, Lewis G, Cunningham AB: Zulu Medicinal Plants: An Inventory. 1996, Pietermaritzburg: University of Natal Press Hutchings A, Scott AH, Lewis G, Cunningham AB: Zulu Medicinal Plants: An Inventory. 1996, Pietermaritzburg: University of Natal Press
10.
go back to reference Gerstner J: A preliminary checklist of Zulu names of plants with short notes. Bantu Studies. Edited by: George J, Liang MD, Drewes SE. 2001, Phytochemical Research in South Africa, 215-236. S. Afr. J. Sci. 2001, 97: 93–105, 12 Gerstner J: A preliminary checklist of Zulu names of plants with short notes. Bantu Studies. Edited by: George J, Liang MD, Drewes SE. 2001, Phytochemical Research in South Africa, 215-236. S. Afr. J. Sci. 2001, 97: 93–105, 12
11.
go back to reference Bisset NG: The Asian species of Strychnos. Part III. The ethnobotany. Lloydia. 1974, 37: 62-107. Bisset NG: The Asian species of Strychnos. Part III. The ethnobotany. Lloydia. 1974, 37: 62-107.
12.
go back to reference Jacot Guillarmod A: Flora of Lesotho. Cramer, Lehr. 1971 Jacot Guillarmod A: Flora of Lesotho. Cramer, Lehr. 1971
13.
go back to reference Oliver-Bever B: Medicinal Plants in Tropical West Africa. 1986, Cambridge University PressCrossRef Oliver-Bever B: Medicinal Plants in Tropical West Africa. 1986, Cambridge University PressCrossRef
14.
go back to reference Doke CM, Vilakazi BW: Zulu-English Dictionary. 1972, Johannesburg: Witwatersrand University Press, 2 Doke CM, Vilakazi BW: Zulu-English Dictionary. 1972, Johannesburg: Witwatersrand University Press, 2
15.
go back to reference Palmer E, Pitman N: Trees of Southern Africa. 1972, Cape Town Press: Balkema Palmer E, Pitman N: Trees of Southern Africa. 1972, Cape Town Press: Balkema
16.
go back to reference Eloff JN: Quantifying the bioactivity of plant extracts during screening and bioassay-guided fractionation. Phytomedicine. 2004, 11: 370-371. 10.1078/0944711041495218.CrossRefPubMed Eloff JN: Quantifying the bioactivity of plant extracts during screening and bioassay-guided fractionation. Phytomedicine. 2004, 11: 370-371. 10.1078/0944711041495218.CrossRefPubMed
17.
go back to reference Kotze M, Eloff JN: Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S Afr J Bot. 2002, 68: 62-67.CrossRef Kotze M, Eloff JN: Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S Afr J Bot. 2002, 68: 62-67.CrossRef
18.
19.
go back to reference Masoko P, Picard J, Eloff JN: Antifungal activities of six South African Terminalia species (Combretaceae). J Ethnopharmacol. 2005, 99: 301-308. 10.1016/j.jep.2005.01.061.CrossRefPubMed Masoko P, Picard J, Eloff JN: Antifungal activities of six South African Terminalia species (Combretaceae). J Ethnopharmacol. 2005, 99: 301-308. 10.1016/j.jep.2005.01.061.CrossRefPubMed
20.
go back to reference Eloff JN: A proposal on expressing the antibacterial activity of plant extracts - a small first step in applying scientific knowledge to rural primary health care in South Africa. S Afr J Sci. 2000, 96: 116-118. Eloff JN: A proposal on expressing the antibacterial activity of plant extracts - a small first step in applying scientific knowledge to rural primary health care in South Africa. S Afr J Sci. 2000, 96: 116-118.
21.
go back to reference Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.CrossRefPubMed Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.CrossRefPubMed
22.
go back to reference Masoko P, Eloff JN: The diversity of antifungal compounds of six South African Terminalia species (Combretaceae) determined by bioautography. Afr J Biotechnol. 2005, 4: 1425-1431. Masoko P, Eloff JN: The diversity of antifungal compounds of six South African Terminalia species (Combretaceae) determined by bioautography. Afr J Biotechnol. 2005, 4: 1425-1431.
23.
go back to reference Cos P, Vlietinck AJ, Vanden Berghe D, Maes L: Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006, 106: 290-302. 10.1016/j.jep.2006.04.003.CrossRefPubMed Cos P, Vlietinck AJ, Vanden Berghe D, Maes L: Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006, 106: 290-302. 10.1016/j.jep.2006.04.003.CrossRefPubMed
24.
go back to reference Omar JH, Van den Bout-van den Beukel CJ, Matee MI, Moshi MJ, Mikx FH, Selemoni HO, Mbwambo ZH, AJ Vdv, Verwelj PE: Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. J Ethnopharmacol. 2006, 108: 124-132. 10.1016/j.jep.2006.04.026.CrossRef Omar JH, Van den Bout-van den Beukel CJ, Matee MI, Moshi MJ, Mikx FH, Selemoni HO, Mbwambo ZH, AJ Vdv, Verwelj PE: Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. J Ethnopharmacol. 2006, 108: 124-132. 10.1016/j.jep.2006.04.026.CrossRef
25.
go back to reference Bosman AA, Combrinck S, Roux-van der Merwe P, Botha BM, McCrindle RI: Isolation of an anthelmintic compound from Leucosidea sericea. S Afri J Bot. 2004, 70: 509-511.CrossRef Bosman AA, Combrinck S, Roux-van der Merwe P, Botha BM, McCrindle RI: Isolation of an anthelmintic compound from Leucosidea sericea. S Afri J Bot. 2004, 70: 509-511.CrossRef
26.
go back to reference Aremu AO, Fawole OA, Chukwujekwu JC, Light ME, Finnie JF, Van Staden J: In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea. J Ethnopharmacol. 2010, 131: 22-27. 10.1016/j.jep.2010.05.043.CrossRefPubMed Aremu AO, Fawole OA, Chukwujekwu JC, Light ME, Finnie JF, Van Staden J: In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea. J Ethnopharmacol. 2010, 131: 22-27. 10.1016/j.jep.2010.05.043.CrossRefPubMed
27.
go back to reference Eloff JN, Famakin JO, Katerere DRP: Combretum woodii (Combretaceae) leaf extracts have high activity against Gram-negative and Gram-positive bacteria. Afr J Biotechnol. 2005, 4: 1161-1166. Eloff JN, Famakin JO, Katerere DRP: Combretum woodii (Combretaceae) leaf extracts have high activity against Gram-negative and Gram-positive bacteria. Afr J Biotechnol. 2005, 4: 1161-1166.
28.
go back to reference Eloff JN, Suleiman M, Naidoo V: A crude extract of Loxostylus alata is as effective in treating aspergillosis in poultry as a commercial drug. Planta Med. 2010, 76: 405-CrossRef Eloff JN, Suleiman M, Naidoo V: A crude extract of Loxostylus alata is as effective in treating aspergillosis in poultry as a commercial drug. Planta Med. 2010, 76: 405-CrossRef
29.
go back to reference Suleiman MS, Duncan N, Eloff JN, Naidoo V: A controlled study to determine the efficacy ofLoxostylis alata(Anacardiaceae) in the treatment of aspergillosis in a chicken (Gallus domesticus) model in comparison to ketoconazole. BMC Veterinary Research. 2010, 8: 210-CrossRef Suleiman MS, Duncan N, Eloff JN, Naidoo V: A controlled study to determine the efficacy ofLoxostylis alata(Anacardiaceae) in the treatment of aspergillosis in a chicken (Gallus domesticus) model in comparison to ketoconazole. BMC Veterinary Research. 2010, 8: 210-CrossRef
Metadata
Title
Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities
Authors
Mathew Adamu
Vinasan Naidoo
Jacobus N Eloff
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2012
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-12-213

Other articles of this Issue 1/2012

BMC Complementary Medicine and Therapies 1/2012 Go to the issue