Skip to main content
Top
Published in: BMC Physiology 1/2004

Open Access 01-12-2004 | Methodology article

Detecting and minimizing zinc contamination in physiological solutions

Author: Alan R Kay

Published in: BMC Physiology | Issue 1/2004

Login to get access

Abstract

Background

To explore the role of zinc (Zn) in cellular physiology it is important to be able to control and quantify the level of Zn contamination in experimental solutions. A technique that relies on a Zn-sensitive fluorimetric probe is introduced for measuring Zn concentrations as low as 100 pM. The method depends on the combination of the Zn-probe FluoZin-3 together with a slow Zn-chelator, Ca-EDTA, that reduces the background Zn levels and allows repeated measurements in the same solution.

Results

The method was used to determine which common labware items could leach Zn into solution. Contamination was predictably found to arise from stainless steel and glass. Perhaps less expectedly it was also introduced by methacrylate cuvettes, plastic tissue culture dishes and other plastic labware. The release of nickel from stainless steel electrodes was also imaged using the fluorescent probe Newport Green.

Conclusion

Zn contamination may arise from rather unexpected sources; it is important that all aspects and components used in the course of an experiment be analyzed for the possibility of introducing contaminants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Finney LA, O'Halloran TV: Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science. 2003, 300: 931-936. 10.1126/science.1085049.CrossRefPubMed Finney LA, O'Halloran TV: Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science. 2003, 300: 931-936. 10.1126/science.1085049.CrossRefPubMed
2.
go back to reference Kimura E, Koike T: Recent development of zinc-fluorophores. Chem Soc Revs. 1998 Kimura E, Koike T: Recent development of zinc-fluorophores. Chem Soc Revs. 1998
3.
go back to reference Burdette SC, Lippard SJ: Coordination chemistry for the neurosciences. Coord Chem Rev. 2001, 216: 333-361. 10.1016/S0010-8545(01)00308-3.CrossRef Burdette SC, Lippard SJ: Coordination chemistry for the neurosciences. Coord Chem Rev. 2001, 216: 333-361. 10.1016/S0010-8545(01)00308-3.CrossRef
4.
go back to reference Gee KR, Zhou ZL, Ton-That D, Sensi SL, Weiss JH: Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium. 2002, 31: 245-251. 10.1016/S0143-4160(02)00053-2.CrossRefPubMed Gee KR, Zhou ZL, Ton-That D, Sensi SL, Weiss JH: Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium. 2002, 31: 245-251. 10.1016/S0143-4160(02)00053-2.CrossRefPubMed
5.
go back to reference Snitsarev VA, Kay AR: Detecting and minimizing errors in calcium-probe measurements arising from transition metals and zinc. Calcium Signaling. Edited by: Tepekin AV. 2001, Oxford, Oxford University Press, 45-57. 2nd. Snitsarev VA, Kay AR: Detecting and minimizing errors in calcium-probe measurements arising from transition metals and zinc. Calcium Signaling. Edited by: Tepekin AV. 2001, Oxford, Oxford University Press, 45-57. 2nd.
6.
7.
go back to reference Aslamkhan AG, Aslamkhan A, Ahearn GA: Preparation of metal ion buffers for biological experimentation: a methods approach with emphasis on iron and zinc. J Exp Zool. 2002, 292: 507-522. 10.1002/jez.10068.CrossRefPubMed Aslamkhan AG, Aslamkhan A, Ahearn GA: Preparation of metal ion buffers for biological experimentation: a methods approach with emphasis on iron and zinc. J Exp Zool. 2002, 292: 507-522. 10.1002/jez.10068.CrossRefPubMed
8.
go back to reference Suhy DA, Simon KD, Linzer DI, O'Halloran TV: Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem. 1999, 274: 9183-9192. 10.1074/jbc.274.14.9183.CrossRefPubMed Suhy DA, Simon KD, Linzer DI, O'Halloran TV: Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem. 1999, 274: 9183-9192. 10.1074/jbc.274.14.9183.CrossRefPubMed
9.
go back to reference Riordan JF, Vallee BL: Preparation of metal-free water. Methods Enzymol. 1988, 158: 3-6. 10.1016/0076-6879(88)58041-2.CrossRefPubMed Riordan JF, Vallee BL: Preparation of metal-free water. Methods Enzymol. 1988, 158: 3-6. 10.1016/0076-6879(88)58041-2.CrossRefPubMed
10.
go back to reference Budde T, Minta A, White JA, Kay AR: Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience. 1997, 79: 347-358. 10.1016/S0306-4522(96)00695-1.CrossRefPubMed Budde T, Minta A, White JA, Kay AR: Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience. 1997, 79: 347-358. 10.1016/S0306-4522(96)00695-1.CrossRefPubMed
11.
go back to reference Smith RM, Martell AE: NIST Critically Selected Stability Constants of Metal Complexes Database. 2003, Gaithersburg, MD, NIST, 7.0 Smith RM, Martell AE: NIST Critically Selected Stability Constants of Metal Complexes Database. 2003, Gaithersburg, MD, NIST, 7.0
12.
go back to reference Chen N, Murphy TH, Raymond LA: Competitive inhibition of NMDA receptor-mediated currents by extracellular calcium chelators. J Neurophysiol. 2000, 84: 693-697.PubMed Chen N, Murphy TH, Raymond LA: Competitive inhibition of NMDA receptor-mediated currents by extracellular calcium chelators. J Neurophysiol. 2000, 84: 693-697.PubMed
13.
go back to reference Gee KR, Zhou ZL, Qian WJ, Kennedy R: Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J Am Chem Soc. 2002, 124: 776-778. 10.1021/ja011774y.CrossRefPubMed Gee KR, Zhou ZL, Qian WJ, Kennedy R: Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J Am Chem Soc. 2002, 124: 776-778. 10.1021/ja011774y.CrossRefPubMed
14.
go back to reference Snitsarev V, Budde T, Stricker TP, Cox JM, Krupa DJ, Geng L, Kay AR: Fluorescent detection of Zn(2+)-rich vesicles with Zinquin: mechanism of action in lipid environments. Biophys J. 2001, 80: 1538-1546.PubMedCentralCrossRefPubMed Snitsarev V, Budde T, Stricker TP, Cox JM, Krupa DJ, Geng L, Kay AR: Fluorescent detection of Zn(2+)-rich vesicles with Zinquin: mechanism of action in lipid environments. Biophys J. 2001, 80: 1538-1546.PubMedCentralCrossRefPubMed
15.
go back to reference Kay AR: Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J. Neurosci. 2003, 23: 6847-6855.PubMed Kay AR: Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J. Neurosci. 2003, 23: 6847-6855.PubMed
16.
go back to reference Taylor HE: Inductively coupled plasma-mass spectrometry: Practices and techniques. 2000, San Diego, CA, Academic Press, 294- Taylor HE: Inductively coupled plasma-mass spectrometry: Practices and techniques. 2000, San Diego, CA, Academic Press, 294-
17.
go back to reference Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ: Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol. 2001, 86: 2597-2604.PubMed Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ: Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol. 2001, 86: 2597-2604.PubMed
18.
go back to reference Doremus RH: Glass Science. 1994, Wiley-Interscience, 352-2nd Doremus RH: Glass Science. 1994, Wiley-Interscience, 352-2nd
19.
go back to reference Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, Lefebvre J, Pattou F: Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem. 2001, 49: 519-528.CrossRefPubMed Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, Lefebvre J, Pattou F: Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem. 2001, 49: 519-528.CrossRefPubMed
20.
go back to reference Conejo MC, Martinez-Martinez L, Garcia I, Picabea L, Pascual A: Effect of siliconized latex urinary catheters on the activity of carbapenems against Pseudomonas aeruginosa strains with defined mutations in ampC, oprD, and genes coding for efflux systems. Int J Antimicrob Agents. 2003, 22: 122-127. 10.1016/S0924-8579(03)00119-5.CrossRefPubMed Conejo MC, Martinez-Martinez L, Garcia I, Picabea L, Pascual A: Effect of siliconized latex urinary catheters on the activity of carbapenems against Pseudomonas aeruginosa strains with defined mutations in ampC, oprD, and genes coding for efflux systems. Int J Antimicrob Agents. 2003, 22: 122-127. 10.1016/S0924-8579(03)00119-5.CrossRefPubMed
21.
go back to reference Koster R, Vieluf D, Kiehn M, Sommerauer M, Kahler J, Baldus S, Meinertz T, Hamm CW: Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet. 2000, 356: 1895-1897. 10.1016/S0140-6736(00)03262-1.CrossRefPubMed Koster R, Vieluf D, Kiehn M, Sommerauer M, Kahler J, Baldus S, Meinertz T, Hamm CW: Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet. 2000, 356: 1895-1897. 10.1016/S0140-6736(00)03262-1.CrossRefPubMed
22.
go back to reference Rae JL, Levis RA: Glass technology for patch clamp electrodes. Methods. Enzymol. 1992, 207: 66-92. 10.1016/0076-6879(92)07005-9.CrossRefPubMed Rae JL, Levis RA: Glass technology for patch clamp electrodes. Methods. Enzymol. 1992, 207: 66-92. 10.1016/0076-6879(92)07005-9.CrossRefPubMed
23.
go back to reference Zuazaga C, Steinacker A: Patch-clamp recording of ion channels: interfering effects of patch pipette glass. NIPS. 1990, 5: 155-158. Zuazaga C, Steinacker A: Patch-clamp recording of ion channels: interfering effects of patch pipette glass. NIPS. 1990, 5: 155-158.
Metadata
Title
Detecting and minimizing zinc contamination in physiological solutions
Author
Alan R Kay
Publication date
01-12-2004
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2004
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/1472-6793-4-4

Other articles of this Issue 1/2004

BMC Physiology 1/2004 Go to the issue