Skip to main content
Top
Published in: BMC Urology 1/2013

Open Access 01-12-2013 | Research article

Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model

Authors: Takeshi Inoue, Satoshi Anai, Sayuri Onishi, Makito Miyake, Nobumichi Tanaka, Akihide Hirayama, Kiyohide Fujimoto, Yoshihiko Hirao

Published in: BMC Urology | Issue 1/2013

Login to get access

Abstract

Background

COX-2 inhibitors have an antitumor potential and have been verified by many researchers. Treatment of cancer cells with external stressors such as irradiation can stimulate the over-expression of COX-2 and possibly confer radiation resistance. In this study, we tested if topical diclofenac, which inhibits both COX-1 and COX-2, administration rendered prostate tumor cells sensitize to the effects of radiation.

Methods

LNCaP-COX-2 and LNCaP-Neo cells were treated with 0 to 1000 μM diclofenac. Next, a clonogenic assay was performed in which cells were subjected to irradiation (0 to 4 Gy) with or without diclofenac. COX-2 expression and other relevant molecules were measured by real-time PCR and immunohistochemistry after irradiation and diclofenac treatment. In addition, we assessed the tumor volumes of xenograft LNCaP-COX-2 cells treated with topical diclofenac with or without radiation therapy (RT).

Results

LNCaP-COX-2 and LNCaP-Neo cell lines experienced cytotoxic effects of diclofenac in a dose related manner. Clonogenic assays demonstrated that LNCaP-COX-2 cells were significantly more resistant to RT than LNCaP-Neo cells. Furthermore, the addition of diclofenac sensitized LNCaP-COX-2 not but LNCaP-Neo cells to the cytocidal effects of radiation. In LNCaP-COX-2 cells, diclofenac enhanced radiation-induced apoptosis compared with RT alone. This phenomenon might be attributed to enhancement of RT-induced TRAIL expression as demonstrated by real-time PCR analysis. Lastly, tumor volumes of LNCaP-COX-2 cells xenograft treated with diclofenac or RT alone was >4-fold higher than in mice treated with combined diclofenac and radiation (p<0.05).

Conclusions

These in vitro and in vivo findings suggest that conventional COX inhibitor, diclofenac enhances the effect of RT on prostate cancer cells that express COX-2. Thus, diclofenac may have potential as radiosensitizer for treatment of prostate cancer.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA. 2002, 99: 13926-13931.CrossRefPubMedPubMedCentral Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA. 2002, 99: 13926-13931.CrossRefPubMedPubMedCentral
3.
go back to reference Schwab JM, Beiter T, Linder JU, Laufer S, Schulz JE, Meyermann R, Schluesener HJ: COX-3 a virtual pain target in humans?. FASEB J. 2003, 17: 2174-2175.CrossRefPubMed Schwab JM, Beiter T, Linder JU, Laufer S, Schulz JE, Meyermann R, Schluesener HJ: COX-3 a virtual pain target in humans?. FASEB J. 2003, 17: 2174-2175.CrossRefPubMed
4.
go back to reference Gupta RA, Dubois RN: Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001, 1: 11-21.CrossRefPubMed Gupta RA, Dubois RN: Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001, 1: 11-21.CrossRefPubMed
5.
go back to reference Williams CS, Mann M, Dubois RN: The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999, 18: 7908-7916.CrossRefPubMed Williams CS, Mann M, Dubois RN: The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999, 18: 7908-7916.CrossRefPubMed
6.
go back to reference Smith WL, DeWitt DL, Garavito RM: Cyclooxygenases: structural, cellular and molecular biology. Annu Rev Biochem. 2000, 69: 145-182.CrossRefPubMed Smith WL, DeWitt DL, Garavito RM: Cyclooxygenases: structural, cellular and molecular biology. Annu Rev Biochem. 2000, 69: 145-182.CrossRefPubMed
7.
go back to reference Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schrör K: Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res. 1999, 59: 198-204.PubMed Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schrör K: Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res. 1999, 59: 198-204.PubMed
8.
go back to reference Ristimäki A, Honkanen N, Jänkälä H, Sipponen P, Härkönen M: Expression of cyclooxygenase-2 in human gastric caricinoma. Cancer Res. 1997, 57: 1276-1280.PubMed Ristimäki A, Honkanen N, Jänkälä H, Sipponen P, Härkönen M: Expression of cyclooxygenase-2 in human gastric caricinoma. Cancer Res. 1997, 57: 1276-1280.PubMed
9.
go back to reference Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T: Expression of cyclooxygenase-1 and −2 in human colorectal cancer. Cancer Res. 1995, 55: 3785-3789.PubMed Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T: Expression of cyclooxygenase-1 and −2 in human colorectal cancer. Cancer Res. 1995, 55: 3785-3789.PubMed
10.
go back to reference Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T: Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998, 58: 3761-3764.PubMed Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T: Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998, 58: 3761-3764.PubMed
11.
go back to reference Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ: Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999, 59: 987-990.PubMed Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ: Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999, 59: 987-990.PubMed
12.
go back to reference Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, Edelstein D, Soslow RA, Koki AT, Woerner BM, Masferrer JL, Dannenberg AJ: Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res. 1999, 59: 991-994.PubMed Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, Edelstein D, Soslow RA, Koki AT, Woerner BM, Masferrer JL, Dannenberg AJ: Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res. 1999, 59: 991-994.PubMed
13.
go back to reference Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H: Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate. 2000, 42: 73-78.CrossRefPubMed Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H: Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate. 2000, 42: 73-78.CrossRefPubMed
14.
go back to reference Zhang H, Sun XF: Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer. Am J Gastroenterol. 2002, 97: 1037-1041.CrossRefPubMed Zhang H, Sun XF: Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer. Am J Gastroenterol. 2002, 97: 1037-1041.CrossRefPubMed
15.
go back to reference Madaan S, Abel PD, Chaudhary KS, Hewitt R, Stott MA, Stamp GW, Lalani EN: Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 2000, 86: 736-741.CrossRefPubMed Madaan S, Abel PD, Chaudhary KS, Hewitt R, Stott MA, Stamp GW, Lalani EN: Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 2000, 86: 736-741.CrossRefPubMed
16.
go back to reference Yoshimura R, Sano H, Masuda C, Kawamura M, Tsubouchi Y, Chargui J, Yoshimura N, Hla T, Wada S: Expression of cyclooxygenase-2 in prostate carcinoma. Cancer. 2000, 89: 589-596.CrossRefPubMed Yoshimura R, Sano H, Masuda C, Kawamura M, Tsubouchi Y, Chargui J, Yoshimura N, Hla T, Wada S: Expression of cyclooxygenase-2 in prostate carcinoma. Cancer. 2000, 89: 589-596.CrossRefPubMed
17.
go back to reference Harris RE, Alshafie GA, Abou-lssa H, Seibert K: Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 2000, 60: 2101-2103.PubMed Harris RE, Alshafie GA, Abou-lssa H, Seibert K: Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 2000, 60: 2101-2103.PubMed
18.
go back to reference Harris RE: Cyclooxygense-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. InflammoPharmacology. 2009, 17: 55-67.CrossRefPubMed Harris RE: Cyclooxygense-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. InflammoPharmacology. 2009, 17: 55-67.CrossRefPubMed
19.
go back to reference Roberts RO, Jacobson DJ, Girman CJ, Rhodes T, Lieber MM, Jacobsen SJ: A population-based study of daily nonsteroidal anti-inflammatory drug use and prostate cancer. Mayo Clin Proc. 2002, 77: 219-225.CrossRefPubMed Roberts RO, Jacobson DJ, Girman CJ, Rhodes T, Lieber MM, Jacobsen SJ: A population-based study of daily nonsteroidal anti-inflammatory drug use and prostate cancer. Mayo Clin Proc. 2002, 77: 219-225.CrossRefPubMed
20.
go back to reference Jacobs EJ, Rodriguez C, Mondul AM, Connell CJ, Henley SJ, Calle EE, Thun MJ: A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J Natl Cancer Inst. 2005, 97: 975-980.CrossRefPubMed Jacobs EJ, Rodriguez C, Mondul AM, Connell CJ, Henley SJ, Calle EE, Thun MJ: A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J Natl Cancer Inst. 2005, 97: 975-980.CrossRefPubMed
21.
go back to reference Vane JR: Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971, 231: 232-235.CrossRefPubMed Vane JR: Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971, 231: 232-235.CrossRefPubMed
22.
go back to reference Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ: Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst. 1999, 91: 1501-1504.CrossRefPubMed Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ: Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst. 1999, 91: 1501-1504.CrossRefPubMed
23.
go back to reference Furuta Y, Hunter N, Barkley T, Hall E, Milas L: Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res. 1988, 48: 3008-3013.PubMed Furuta Y, Hunter N, Barkley T, Hall E, Milas L: Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res. 1988, 48: 3008-3013.PubMed
24.
go back to reference Milas L, Furuta Y, Hunter N, Nishiguchi L, Runkel S: Dependence of indomethacin-induced potentiation of murine tumor radioresponse on tumor host immunocompetence. Cancer Res. 1990, 50: 4473-4477.PubMed Milas L, Furuta Y, Hunter N, Nishiguchi L, Runkel S: Dependence of indomethacin-induced potentiation of murine tumor radioresponse on tumor host immunocompetence. Cancer Res. 1990, 50: 4473-4477.PubMed
25.
go back to reference Anai S, Tanaka M, Shiverick KT, Kim W, Takada S, Boehlein S, Goodison S, Mizokami A, Rosser CJ: Increased expression of cyclooxygenase-2 correlates with resistance to radiation in human prostate adenocarcinoma cells. J Urol. 2007, 177: 1913-1917.CrossRefPubMed Anai S, Tanaka M, Shiverick KT, Kim W, Takada S, Boehlein S, Goodison S, Mizokami A, Rosser CJ: Increased expression of cyclooxygenase-2 correlates with resistance to radiation in human prostate adenocarcinoma cells. J Urol. 2007, 177: 1913-1917.CrossRefPubMed
26.
go back to reference Piazza GA, Rahm AL, Krutzsch M, Sperl G, Paranka NS, Gross PH, Brendel K, Burt RW, Alberts DS, Pamukcu R, Ahnen DJ: Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 1995, 55: 3110-3116.PubMed Piazza GA, Rahm AL, Krutzsch M, Sperl G, Paranka NS, Gross PH, Brendel K, Burt RW, Alberts DS, Pamukcu R, Ahnen DJ: Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 1995, 55: 3110-3116.PubMed
27.
go back to reference Tsujii M, DuBois RN: Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995, 83: 493-501.CrossRefPubMed Tsujii M, DuBois RN: Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995, 83: 493-501.CrossRefPubMed
28.
go back to reference Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI, Rigas B: Effects of nonsteroidal anti-inflammatory drugs on proliferation and induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol. 1996, 52: 237-245.CrossRefPubMed Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI, Rigas B: Effects of nonsteroidal anti-inflammatory drugs on proliferation and induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol. 1996, 52: 237-245.CrossRefPubMed
29.
go back to reference Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, Mohiuddin M, Rangnekar VM: Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 1997, 272: 33056-33061.CrossRefPubMed Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, Mohiuddin M, Rangnekar VM: Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 1997, 272: 33056-33061.CrossRefPubMed
30.
go back to reference Marini P, Schmid A, Jendrossek V, Faltin H, Daniel PT, Budach W, Belka C: Irradiation specifically sensitizes solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer. 2005, 14: 5-CrossRef Marini P, Schmid A, Jendrossek V, Faltin H, Daniel PT, Budach W, Belka C: Irradiation specifically sensitizes solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer. 2005, 14: 5-CrossRef
31.
go back to reference Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F: Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res. 2002, 62: 4903-4908.PubMed Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F: Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res. 2002, 62: 4903-4908.PubMed
32.
33.
go back to reference Pyo H, Choy H, Amorino GP, Kim J, Cao Q, Hercules SK, DuBois RN: A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res. 2001, 7: 2998-3005.PubMed Pyo H, Choy H, Amorino GP, Kim J, Cao Q, Hercules SK, DuBois RN: A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res. 2001, 7: 2998-3005.PubMed
34.
go back to reference Hanson WR, Ainsworth EJ: 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiat Res. 1985, 103: 196-203.CrossRefPubMed Hanson WR, Ainsworth EJ: 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiat Res. 1985, 103: 196-203.CrossRefPubMed
35.
go back to reference Walden TL, Patchen M, Snyder SL: 16,16-Dimethyl prostaglandin E2 increases survival in mice following irradiation. Radiat Res. 1987, 109: 440-448.CrossRefPubMed Walden TL, Patchen M, Snyder SL: 16,16-Dimethyl prostaglandin E2 increases survival in mice following irradiation. Radiat Res. 1987, 109: 440-448.CrossRefPubMed
36.
go back to reference Shareef MM, Cui N, Burikhanov R, Gupta S, Satishkumar S, Shajahan S, Mohiuddin M, Rangnekar VM, Ahmed MM: Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res. 2007, 67: 11811-11820.CrossRefPubMed Shareef MM, Cui N, Burikhanov R, Gupta S, Satishkumar S, Shajahan S, Mohiuddin M, Rangnekar VM, Ahmed MM: Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res. 2007, 67: 11811-11820.CrossRefPubMed
37.
go back to reference Johnson GE, Ivanov VN, Hei TK: Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis. 2008, 13: 790-802.CrossRefPubMedPubMedCentral Johnson GE, Ivanov VN, Hei TK: Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis. 2008, 13: 790-802.CrossRefPubMedPubMedCentral
38.
go back to reference Unnithan J, Macklis RM: TRAIL induction by radiation in lymphoma patients. Cancer Invest. 2004, 22: 522-525.CrossRefPubMed Unnithan J, Macklis RM: TRAIL induction by radiation in lymphoma patients. Cancer Invest. 2004, 22: 522-525.CrossRefPubMed
39.
go back to reference Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ: COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology. 2002, 35: 552-559.CrossRefPubMed Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ: COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology. 2002, 35: 552-559.CrossRefPubMed
Metadata
Title
Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model
Authors
Takeshi Inoue
Satoshi Anai
Sayuri Onishi
Makito Miyake
Nobumichi Tanaka
Akihide Hirayama
Kiyohide Fujimoto
Yoshihiko Hirao
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2013
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/1471-2490-13-1

Other articles of this Issue 1/2013

BMC Urology 1/2013 Go to the issue