Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2014

Open Access 01-12-2014 | Technical advance

Reproducibility of a peripheral quantitative computed tomography scan protocol to measure the material properties of the second metatarsal

Authors: Elodie Chaplais, David Greene, Anita Hood, Scott Telfer, Verona du Toit, Davinder Singh-Grewal, Joshua Burns, Keith Rome, Daniel J Schiferl, Gordon J Hendry

Published in: BMC Musculoskeletal Disorders | Issue 1/2014

Login to get access

Abstract

Background

Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT.

Methods

Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%).

Results

Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI – mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI – mid shaft (ICC 0.99; CV% 3.2).

Conclusions

The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Lingg G, Soltesz I, Kessler S, Dreher R: Insufficiency and stress fractures of the long bones occurring in patients with rheumatoid arthritis and other inflammatory diseases, with a contribution on the possibilities of computer tomography. Eur J Radiol. 1997, 26: 54-63.CrossRefPubMed Lingg G, Soltesz I, Kessler S, Dreher R: Insufficiency and stress fractures of the long bones occurring in patients with rheumatoid arthritis and other inflammatory diseases, with a contribution on the possibilities of computer tomography. Eur J Radiol. 1997, 26: 54-63.CrossRefPubMed
3.
go back to reference Donahue SW, Sharkey NA, Modanlou KA, Sequeira LN, Martin RB: Bone strain and microcracks at stress fracture sites in human metatarsals. Bone. 2000, 27: 827-833.CrossRefPubMed Donahue SW, Sharkey NA, Modanlou KA, Sequeira LN, Martin RB: Bone strain and microcracks at stress fracture sites in human metatarsals. Bone. 2000, 27: 827-833.CrossRefPubMed
4.
go back to reference Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG: Stress fractures in atheletes: a study of 320 cases. Am J Sports Med. 1987, 15: 46-58.CrossRefPubMed Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG: Stress fractures in atheletes: a study of 320 cases. Am J Sports Med. 1987, 15: 46-58.CrossRefPubMed
5.
go back to reference Ekstrand J, Torstveit MK: Stress fractures in elite male football players. Scand J Sci Sports. 2012, 22: 341-346.CrossRef Ekstrand J, Torstveit MK: Stress fractures in elite male football players. Scand J Sci Sports. 2012, 22: 341-346.CrossRef
6.
go back to reference Valimaki V, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Suominen H, Valimaki MJ: Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone. 2005, 37: 267-273.CrossRefPubMed Valimaki V, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Suominen H, Valimaki MJ: Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone. 2005, 37: 267-273.CrossRefPubMed
7.
go back to reference Arangio GA, Beam H, Kowalczyk G, Salathe EP: Analysis of stress in the metatarsals. Foot Ankle Surg. 1998, 4: 123-128.CrossRef Arangio GA, Beam H, Kowalczyk G, Salathe EP: Analysis of stress in the metatarsals. Foot Ankle Surg. 1998, 4: 123-128.CrossRef
8.
go back to reference Muehleman C, Lidtke R, Berzins A, Becker JH, Shott S, Sumner DR: Contributions of bone density and geometry to the strength of the human second metatarsal. Bone. 2000, 27: 709-714.CrossRefPubMed Muehleman C, Lidtke R, Berzins A, Becker JH, Shott S, Sumner DR: Contributions of bone density and geometry to the strength of the human second metatarsal. Bone. 2000, 27: 709-714.CrossRefPubMed
9.
go back to reference Divittorio G, Jackson KL, Chindalore VL, Welker W, Walker JB: Examining the relationship between bone mineral density and fracture risk reduction during pharmacologic treatment of osteoporosis. Pharmacotherapy. 2006, 26: 14-114.CrossRef Divittorio G, Jackson KL, Chindalore VL, Welker W, Walker JB: Examining the relationship between bone mineral density and fracture risk reduction during pharmacologic treatment of osteoporosis. Pharmacotherapy. 2006, 26: 14-114.CrossRef
11.
go back to reference Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I: Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res. 1998, 13: 871-882.CrossRefPubMed Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I: Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res. 1998, 13: 871-882.CrossRefPubMed
12.
go back to reference Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, Moyer-Mileur L, Shepherd J, Specker B, Ward K, Hans D: Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom. 2008, 11: 59-74.CrossRefPubMed Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, Moyer-Mileur L, Shepherd J, Specker B, Ward K, Hans D: Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom. 2008, 11: 59-74.CrossRefPubMed
13.
go back to reference Lequin MH, Hop WCJ, van Rijn RR, Bukkems MCHW, Verhaak LLJ, Robben SGF, van Kuijk C: Comparison between quantitative calcaneal and tibial ultrasound in a Duth Caucasian pediatric and adolescent population. J Clin Densitom. 2001, 4: 137-146.CrossRefPubMed Lequin MH, Hop WCJ, van Rijn RR, Bukkems MCHW, Verhaak LLJ, Robben SGF, van Kuijk C: Comparison between quantitative calcaneal and tibial ultrasound in a Duth Caucasian pediatric and adolescent population. J Clin Densitom. 2001, 4: 137-146.CrossRefPubMed
14.
go back to reference Fouque-Aubert A, Boutroy S, Marotte H, Vilayphiou N, Bacchetta J, Miossec P, Delmas PD, Chapurlat RD: Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann Rheum Dis. 2010, 69: 1671-1676.CrossRefPubMed Fouque-Aubert A, Boutroy S, Marotte H, Vilayphiou N, Bacchetta J, Miossec P, Delmas PD, Chapurlat RD: Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann Rheum Dis. 2010, 69: 1671-1676.CrossRefPubMed
15.
go back to reference Feehan L, Buie H, Li L, McKay H: A customized protocol to assess bone quality in the metacarpal head, metacarpal shaft and distal radius: a high resolution peripheral quantitative computed tomography precision study. BMC Musculoskelet Disord. 2013, 14: 367-CrossRefPubMedPubMedCentral Feehan L, Buie H, Li L, McKay H: A customized protocol to assess bone quality in the metacarpal head, metacarpal shaft and distal radius: a high resolution peripheral quantitative computed tomography precision study. BMC Musculoskelet Disord. 2013, 14: 367-CrossRefPubMedPubMedCentral
16.
go back to reference Ruegsegger P, Kalender WA: A phantom for standardization and quality control in peripheral bone measurements by pQCT and DXA. Phys Med Biol. 1993, 38: 1963-1970.CrossRef Ruegsegger P, Kalender WA: A phantom for standardization and quality control in peripheral bone measurements by pQCT and DXA. Phys Med Biol. 1993, 38: 1963-1970.CrossRef
17.
go back to reference Damilakis J, Adams JE, Guglielmi G, Link TM: Radiation exposure in X-ray based imaging techniques used in osteoporosis. Eur Radiol. 2010, 20: 2707-2714.CrossRefPubMedPubMedCentral Damilakis J, Adams JE, Guglielmi G, Link TM: Radiation exposure in X-ray based imaging techniques used in osteoporosis. Eur Radiol. 2010, 20: 2707-2714.CrossRefPubMedPubMedCentral
18.
go back to reference Shrout PE, Fleiss JL: Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979, 86: 420-428.CrossRefPubMed Shrout PE, Fleiss JL: Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979, 86: 420-428.CrossRefPubMed
19.
go back to reference Fleiss JL: The Design and Analysis of Clinical Experiments. 1986, New York: John Wiley Sons, 1-31. Fleiss JL: The Design and Analysis of Clinical Experiments. 1986, New York: John Wiley Sons, 1-31.
20.
go back to reference Atkinson G, Neville AM: Statistical methods for assessing measurement error (reliability) invariables relevant to sports medicine. Sports Med. 1998, 26: 217-238.CrossRefPubMed Atkinson G, Neville AM: Statistical methods for assessing measurement error (reliability) invariables relevant to sports medicine. Sports Med. 1998, 26: 217-238.CrossRefPubMed
21.
go back to reference Courtney AC, Davies BL, Manning T, Kambic H: Effects of age, density and geometry on the bending strength of human metatarsals. Foot Ankle Int. 1997, 18: 216-221.CrossRefPubMed Courtney AC, Davies BL, Manning T, Kambic H: Effects of age, density and geometry on the bending strength of human metatarsals. Foot Ankle Int. 1997, 18: 216-221.CrossRefPubMed
22.
go back to reference Gutekunst DJ, Patel TK, Smith KE, Commean PK, Silva MJ, Sinacore DR: Predicting ex vivo failure loads in human metatarsals using bone strength indices derived from volumetric quantitative computer tomography. J Biomech. 2013, 46: 745-750.CrossRefPubMed Gutekunst DJ, Patel TK, Smith KE, Commean PK, Silva MJ, Sinacore DR: Predicting ex vivo failure loads in human metatarsals using bone strength indices derived from volumetric quantitative computer tomography. J Biomech. 2013, 46: 745-750.CrossRefPubMed
23.
go back to reference Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst M, Stampa B, Timm W, Genant HK: Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone. 2009, 45: 110-118.CrossRefPubMed Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst M, Stampa B, Timm W, Genant HK: Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone. 2009, 45: 110-118.CrossRefPubMed
24.
go back to reference Swinford RR, Warden SJ: Factors affecting short-term precision of musculoskeletal measures using peripheral quantitative computed tomography (pQCT). Osteoporos Int. 2010, 21: 1863-1870.CrossRefPubMed Swinford RR, Warden SJ: Factors affecting short-term precision of musculoskeletal measures using peripheral quantitative computed tomography (pQCT). Osteoporos Int. 2010, 21: 1863-1870.CrossRefPubMed
25.
go back to reference Biam S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW, Lentle BC: Precision assessment and radiation safety for dual x-ray absoprtiometry: position paper of the international society for clinical densitometry. J Clin Densitom. 2005, 8: 371-378.CrossRef Biam S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW, Lentle BC: Precision assessment and radiation safety for dual x-ray absoprtiometry: position paper of the international society for clinical densitometry. J Clin Densitom. 2005, 8: 371-378.CrossRef
26.
go back to reference Weiss RJ, Wick MC, Ackermann PW, Montgomery SM: Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases – a case-control study with 53,108 patients with fracture. J Rheumatol. 2010, 37: 2247-2250.CrossRefPubMed Weiss RJ, Wick MC, Ackermann PW, Montgomery SM: Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases – a case-control study with 53,108 patients with fracture. J Rheumatol. 2010, 37: 2247-2250.CrossRefPubMed
27.
go back to reference Dixon SJ, Creaby MW, Allsopp AJ: Comparison of static and dynamic biomechanical measures in military recruits with and without a history of third metatarsal stress fracture. Clin Biomech. 2006, 21: 412-419.CrossRef Dixon SJ, Creaby MW, Allsopp AJ: Comparison of static and dynamic biomechanical measures in military recruits with and without a history of third metatarsal stress fracture. Clin Biomech. 2006, 21: 412-419.CrossRef
28.
go back to reference Ashe MC, Liu-Ambrose T, Khan KM, White N, McKay HA: Optimizing results from pQCT: reliability of operator-dependent pQCT variables in cadavers and humans with low bone mass. J Clin Densitom. 2005, 8: 335-340.CrossRefPubMed Ashe MC, Liu-Ambrose T, Khan KM, White N, McKay HA: Optimizing results from pQCT: reliability of operator-dependent pQCT variables in cadavers and humans with low bone mass. J Clin Densitom. 2005, 8: 335-340.CrossRefPubMed
Metadata
Title
Reproducibility of a peripheral quantitative computed tomography scan protocol to measure the material properties of the second metatarsal
Authors
Elodie Chaplais
David Greene
Anita Hood
Scott Telfer
Verona du Toit
Davinder Singh-Grewal
Joshua Burns
Keith Rome
Daniel J Schiferl
Gordon J Hendry
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2014
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-15-242

Other articles of this Issue 1/2014

BMC Musculoskeletal Disorders 1/2014 Go to the issue