Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2013

Open Access 01-12-2013 | Research article

The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: a retrospective analysis from the Canadian multicentre osteoporosis study

Authors: Jeffrey M Muir, Chenglin Ye, Mohit Bhandari, Jonathan D Adachi, Lehana Thabane

Published in: BMC Musculoskeletal Disorders | Issue 1/2013

Login to get access

Abstract

Background

Physical activity is known to benefit many physiological processes, including bone turnover. There are; however, currently no clinical guidelines regarding the most appropriate type, intensity and duration of activity to prevent bone loss.

Methods

To help address this gap in the literature, we performed a retrospective analysis of data from the Canadian Multicentre Osteoporosis Study (CaMos), a prospective cohort of 9423 adult patients, to determine the relationship between the amount of regular daily physical activity performed and bone mineral density. A total of 1169 female participants aged 75 and over provided information regarding their daily activity levels, including the amount of time spent each week performing physical activity at varying levels of intensity. Multiple and linear regression analyses were used to determine the effect of increasing amounts of this regular physical activity on bone mineral density.

Results

The results indicate that a step increase in the amount of physical activity performed each day resulted in a positive effect on bone mineral density at the hip, Ward’s triangle, trochanter and femoral neck (B = 0.006 to 0.008, p < 0.05). Possible confounding factors such as the use of anti-resorptive therapy, body mass index and age were included in the analysis and suggested that age had a negative effect on bone density while body mass index had a positive effect. Anti-resorptive therapy provided a protective effect against loss of bone density.

Conclusions

The data indicate that a step increase in the amount of daily activity, using simple, daily performed tasks, can help prevent decreases in post-menopausal bone mineral density.
Appendix
Available only for authorised users
Literature
2.
go back to reference National Osteoporosis Foundation: America’s Bone Health: The State of Osteoporosis and Low Bone Mass in Our Nation. 2002, Washington, DC: National Osteoporosis Foundation National Osteoporosis Foundation: America’s Bone Health: The State of Osteoporosis and Low Bone Mass in Our Nation. 2002, Washington, DC: National Osteoporosis Foundation
4.
go back to reference Becker DJ, Kilgore ML, Morrisey MA: The societal burden of osteoporosis. Curr Rheumatol Rep. 2010, 12: 186-191. 10.1007/s11926-010-0097-y.CrossRefPubMed Becker DJ, Kilgore ML, Morrisey MA: The societal burden of osteoporosis. Curr Rheumatol Rep. 2010, 12: 186-191. 10.1007/s11926-010-0097-y.CrossRefPubMed
5.
go back to reference Burge R, Dawson-Hughes B, Solomon DH: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007, 22: 465-475. 10.1359/jbmr.061113.CrossRefPubMed Burge R, Dawson-Hughes B, Solomon DH: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007, 22: 465-475. 10.1359/jbmr.061113.CrossRefPubMed
6.
go back to reference Ray NF, Chan JK, Thamer M, Melton LJ: Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report for the National Osteoporosis Foundation. J Bone Miner Res. 1997, 12: 24-35. 10.1359/jbmr.1997.12.1.24.CrossRefPubMed Ray NF, Chan JK, Thamer M, Melton LJ: Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report for the National Osteoporosis Foundation. J Bone Miner Res. 1997, 12: 24-35. 10.1359/jbmr.1997.12.1.24.CrossRefPubMed
7.
go back to reference Hoerger TJ, Downs KE, Lakshmanan MC: Healthcare use among U.S. women aged 45 and older: total costs and costs for selected postmenopausal health risks. J Womens Health Gend Based Med. 1999, 8: 1077-1089. 10.1089/jwh.1.1999.8.1077.CrossRefPubMed Hoerger TJ, Downs KE, Lakshmanan MC: Healthcare use among U.S. women aged 45 and older: total costs and costs for selected postmenopausal health risks. J Womens Health Gend Based Med. 1999, 8: 1077-1089. 10.1089/jwh.1.1999.8.1077.CrossRefPubMed
8.
go back to reference Chrischilles E, Shireman T, Wallace R: Costs and health effects of osteoporosis fractures. Bone. 1994, 15: 377-386. 10.1016/8756-3282(94)90813-3.CrossRefPubMed Chrischilles E, Shireman T, Wallace R: Costs and health effects of osteoporosis fractures. Bone. 1994, 15: 377-386. 10.1016/8756-3282(94)90813-3.CrossRefPubMed
9.
go back to reference Phillips S, Fox N, Jacobs J, Wright WE: The direct medical costs of osteoporosis for American women aged 45 and older. Bone. 1986, 9: 271-279.CrossRef Phillips S, Fox N, Jacobs J, Wright WE: The direct medical costs of osteoporosis for American women aged 45 and older. Bone. 1986, 9: 271-279.CrossRef
10.
go back to reference Zerwekh JE, Ruml LA, Gottschalk F, Pak CYC: The effects of twelve eeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res. 1998, 13 (10): 1594-1601.CrossRefPubMed Zerwekh JE, Ruml LA, Gottschalk F, Pak CYC: The effects of twelve eeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res. 1998, 13 (10): 1594-1601.CrossRefPubMed
11.
go back to reference Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G: Exercise for preventing and treating osteoporosis in postmenopausal women (Review). 2011, The Cochrane Collaboration. JohnWiley & Sons, Ltd Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G: Exercise for preventing and treating osteoporosis in postmenopausal women (Review). 2011, The Cochrane Collaboration. JohnWiley & Sons, Ltd
12.
go back to reference Lonsdale C, Hall AM, Williams GC, McDonough SM, Ntoumanis N, Murray A, Hurley DA: Communication style and exercise compliance in physiotherapy (CONNECT). A cluster randomized controlled trial to test a theory-based intervention to increase chronic low back pain patients’ adherence to physiotherapists’ recommendations: study rationale, design, and methods. BMC Musculoskelet Disord. 2012, 13: 104-10.1186/1471-2474-13-104.CrossRefPubMedPubMedCentral Lonsdale C, Hall AM, Williams GC, McDonough SM, Ntoumanis N, Murray A, Hurley DA: Communication style and exercise compliance in physiotherapy (CONNECT). A cluster randomized controlled trial to test a theory-based intervention to increase chronic low back pain patients’ adherence to physiotherapists’ recommendations: study rationale, design, and methods. BMC Musculoskelet Disord. 2012, 13: 104-10.1186/1471-2474-13-104.CrossRefPubMedPubMedCentral
13.
go back to reference Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitripoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD: Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ. 2009, 181 (5): 265-271.CrossRefPubMedPubMedCentral Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitripoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD: Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ. 2009, 181 (5): 265-271.CrossRefPubMedPubMedCentral
14.
go back to reference Kreiger N, Tenenhouse A, Joseph L: The Canadian Multicentre Osteoporosis Study (CaMos): background, rationale, methods. Can J Aging. 1999, 18: 376-387. 10.1017/S0714980800009934.CrossRef Kreiger N, Tenenhouse A, Joseph L: The Canadian Multicentre Osteoporosis Study (CaMos): background, rationale, methods. Can J Aging. 1999, 18: 376-387. 10.1017/S0714980800009934.CrossRef
15.
go back to reference Genant HK: Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res Jun. 1995, 10 (6): 997-998.CrossRef Genant HK: Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res Jun. 1995, 10 (6): 997-998.CrossRef
16.
go back to reference Lu Y, Fuerst T, Hui S, Genant HK: Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int. 2001, 12 (6): 438-444. 10.1007/s001980170087.CrossRefPubMed Lu Y, Fuerst T, Hui S, Genant HK: Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int. 2001, 12 (6): 438-444. 10.1007/s001980170087.CrossRefPubMed
20.
go back to reference Bolton KL, Egerton T, Wark J, Wee E, Matthews B, Kelly A, Craven R, Kantor S, Bennell KL: Effects of exercise on bone density and falls risk factors in post-menopausal women with osteopenia: A randomized controlled trial. J Sci Med Sport. 2012, 15: 102-109. 10.1016/j.jsams.2011.08.007.CrossRefPubMed Bolton KL, Egerton T, Wark J, Wee E, Matthews B, Kelly A, Craven R, Kantor S, Bennell KL: Effects of exercise on bone density and falls risk factors in post-menopausal women with osteopenia: A randomized controlled trial. J Sci Med Sport. 2012, 15: 102-109. 10.1016/j.jsams.2011.08.007.CrossRefPubMed
21.
go back to reference Kelley GA: Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998, 77 (1): 76-87. 10.1097/00002060-199801000-00015.CrossRefPubMed Kelley GA: Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998, 77 (1): 76-87. 10.1097/00002060-199801000-00015.CrossRefPubMed
22.
go back to reference Kerr D, Morton A, Dick I: Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996, 11 (2): 218-225.CrossRefPubMed Kerr D, Morton A, Dick I: Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996, 11 (2): 218-225.CrossRefPubMed
23.
go back to reference Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P, Harvey M: Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Ger Soc. 1996, 44 (7): 756-762.CrossRef Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P, Harvey M: Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Ger Soc. 1996, 44 (7): 756-762.CrossRef
24.
go back to reference Gerdhem P, Akesson K, Obrant KJ: Effect of previous and present physical activity on bone mass in elderly women. Osteoporos Int. 2013, 14 (3): 208-212. Epub 2003 Apr 10 Gerdhem P, Akesson K, Obrant KJ: Effect of previous and present physical activity on bone mass in elderly women. Osteoporos Int. 2013, 14 (3): 208-212. Epub 2003 Apr 10
25.
go back to reference Ravn P, Bidstrup M, Wasnich RD, Davis JW, McClung MR, Balske A, Coupland C, Sahota O, Kaur A, Daley M, Cizza G, for the Early Postmenopausal Intervention Cohort Study Group: Alendronate and estrogen–progestin in the long-term prevention of bone loss: four-year results from the early postmenopausal intervention cohort study: a randomized, controlled trial. Ann Intern Med. 1999, 131: 935-942.CrossRefPubMed Ravn P, Bidstrup M, Wasnich RD, Davis JW, McClung MR, Balske A, Coupland C, Sahota O, Kaur A, Daley M, Cizza G, for the Early Postmenopausal Intervention Cohort Study Group: Alendronate and estrogen–progestin in the long-term prevention of bone loss: four-year results from the early postmenopausal intervention cohort study: a randomized, controlled trial. Ann Intern Med. 1999, 131: 935-942.CrossRefPubMed
26.
go back to reference Warming L, Hassager C, Christiansen C: Changes in bone mineral density with age in men and women: a longitudinal study. Osteop Intl. 2002, 13 (2): 105-112. 10.1007/s001980200001.CrossRef Warming L, Hassager C, Christiansen C: Changes in bone mineral density with age in men and women: a longitudinal study. Osteop Intl. 2002, 13 (2): 105-112. 10.1007/s001980200001.CrossRef
27.
go back to reference Heaney RP, Rafferty K: Preponderance of the evidence:an example from the issue of calcium intake and body composition. Nutrition review. 2008, 67 (1): 32-39.CrossRef Heaney RP, Rafferty K: Preponderance of the evidence:an example from the issue of calcium intake and body composition. Nutrition review. 2008, 67 (1): 32-39.CrossRef
28.
go back to reference One Y: Diet therapy for diabetes and obesity, considering osteoporosis. Clin Calcium. 2008, 18 (5): 662-669. One Y: Diet therapy for diabetes and obesity, considering osteoporosis. Clin Calcium. 2008, 18 (5): 662-669.
29.
go back to reference Reid IR: Relationships between fat and Bone. Osteoporos Int. 2008, 19 (5): 595-606. 10.1007/s00198-007-0492-z.CrossRefPubMed Reid IR: Relationships between fat and Bone. Osteoporos Int. 2008, 19 (5): 595-606. 10.1007/s00198-007-0492-z.CrossRefPubMed
Metadata
Title
The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: a retrospective analysis from the Canadian multicentre osteoporosis study
Authors
Jeffrey M Muir
Chenglin Ye
Mohit Bhandari
Jonathan D Adachi
Lehana Thabane
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2013
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-14-253

Other articles of this Issue 1/2013

BMC Musculoskeletal Disorders 1/2013 Go to the issue