Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2013

Open Access 01-12-2013 | Research article

Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: aspects on using non-injured leg as control

Authors: Sören Strandberg, Maria Lindström, Marie-Louise Wretling, Peter Aspelin, Adel Shalabi

Published in: BMC Musculoskeletal Disorders | Issue 1/2013

Login to get access

Abstract

Background

Anterior cruciate ligament (ACL) tears are common, functionally disabling, and predispose to subsequent injuries and early onset of osteoarthritis in the knee. Injuries result in muscular atrophy and impaired muscular activation. To optimize surgical methods and rehabilitation strategies, knowledge of the effects of ACL injuries on muscles size and function is needed. Asymmetry due to limb dominance implies that the effect of ACL-injury might be different in right-sided and left-sided injuries which, should be taken in account when evaluating the effect of an injury. Evaluation of the effects of injuries is usually made with the contralateral leg as control. The aim of this study is to describe the effect of ACL-injuries on thigh muscle size and also to analyze feasibility of using contralateral limb as control.

Methods

Sixty-two patients scheduled to undergo ACL reconstruction were examined with computed tomography (CT). Muscle cross sectional area (CSA) was recorded for quadriceps, hamstrings, gracilis and sartorius 15 cm above the knee joint. Comparisons were made between the injured and non-injured side and between individuals separated by gender and side of injury. Comparisons were also made for patients with or without concomitant meniscal tear, for patients differing in time between injury and examinations and for patients with different level of physical activity after the injury.

Results

Quadriceps CSA was 5% smaller on the injured side. There was an indication that the muscles of the right thigh were generally bigger than those of the left thigh. The difference between the injured and the non-injured side was larger for right-sided injuries than for left-sided. There was also a greater difference in semimembranosus for women than for men. There were no differences related to meniscal injury, time since injury or physical activity.

Conclusion

The use of contralateral leg for evaluating the effect of ACL-injury is often the only available alternative but our study indicates that the difference in CSA between injured and non-injured side does not necessarily reflect the true degree of atrophy, as there are side differences both in muscle size in general and in the effect of an ACL-injury on muscle size.
Literature
1.
go back to reference Baugher WH, Warren RF, Marshall JL, Joseph A: Quadriceps atrophy in the anterior cruciate insufficient knee. Am J Sports Med. 1984, 12 (3): 192-195. 10.1177/036354658401200304.CrossRefPubMed Baugher WH, Warren RF, Marshall JL, Joseph A: Quadriceps atrophy in the anterior cruciate insufficient knee. Am J Sports Med. 1984, 12 (3): 192-195. 10.1177/036354658401200304.CrossRefPubMed
2.
go back to reference Gerber C, Hoppeler H, Claassen H, Robotti G, Zehnder R, Jakob RP: The lower-extremity musculature in chronic symptomatic instability of the anterior cruciate ligament. J Bone Joint Surg Am. 1985, 67 (7): 1034-1043.PubMed Gerber C, Hoppeler H, Claassen H, Robotti G, Zehnder R, Jakob RP: The lower-extremity musculature in chronic symptomatic instability of the anterior cruciate ligament. J Bone Joint Surg Am. 1985, 67 (7): 1034-1043.PubMed
3.
go back to reference Lorentzon R, Elmqvist LG, Sjostrom M, Fagerlund M, Fuglmeyer AR: Thigh musculature in relation to chronic anterior cruciate ligament tear: muscle size, morphology, and mechanical output before reconstruction. Am J Sports Med. 1989, 17 (3): 423-429. 10.1177/036354658901700318.CrossRefPubMed Lorentzon R, Elmqvist LG, Sjostrom M, Fagerlund M, Fuglmeyer AR: Thigh musculature in relation to chronic anterior cruciate ligament tear: muscle size, morphology, and mechanical output before reconstruction. Am J Sports Med. 1989, 17 (3): 423-429. 10.1177/036354658901700318.CrossRefPubMed
4.
go back to reference Williams GN, Snyder-Mackler L, Barrance PJ, Buchanan TS: Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech. 2005, 38 (4): 685-693. 10.1016/j.jbiomech.2004.04.004.CrossRefPubMed Williams GN, Snyder-Mackler L, Barrance PJ, Buchanan TS: Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech. 2005, 38 (4): 685-693. 10.1016/j.jbiomech.2004.04.004.CrossRefPubMed
5.
go back to reference Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR: Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors?. Eur J Appl Physiol Occup Physiol. 1988, 58 (1–2): 203-207.CrossRefPubMed Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR: Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors?. Eur J Appl Physiol Occup Physiol. 1988, 58 (1–2): 203-207.CrossRefPubMed
6.
go back to reference Snyder-Mackler L, De Luca PF, Williams PR, Eastlack ME, Bartolozzi AR: Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 1994, 76 (4): 555-560.PubMed Snyder-Mackler L, De Luca PF, Williams PR, Eastlack ME, Bartolozzi AR: Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 1994, 76 (4): 555-560.PubMed
7.
go back to reference Hurley MV: The effects of joint damage on muscle function, proprioception and rehabilitation. Man Ther. 1997, 2 (1): 11-17. 10.1054/math.1997.0281.CrossRefPubMed Hurley MV: The effects of joint damage on muscle function, proprioception and rehabilitation. Man Ther. 1997, 2 (1): 11-17. 10.1054/math.1997.0281.CrossRefPubMed
8.
go back to reference Urbach D, Nebelung W, Ropke M, Becker R, Awiszus F: Bilateral dysfunction of the quadriceps muscle after unilateral cruciate ligament rupture with concomitant injury central activation deficit. Unfallchirurg. 2000, 103 (11): 949-955. 10.1007/s001130050651.CrossRefPubMed Urbach D, Nebelung W, Ropke M, Becker R, Awiszus F: Bilateral dysfunction of the quadriceps muscle after unilateral cruciate ligament rupture with concomitant injury central activation deficit. Unfallchirurg. 2000, 103 (11): 949-955. 10.1007/s001130050651.CrossRefPubMed
9.
go back to reference Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM: Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008, 27 (3): 383-404. 10.1016/j.csm.2008.03.004. viiCrossRefPubMed Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM: Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008, 27 (3): 383-404. 10.1016/j.csm.2008.03.004. viiCrossRefPubMed
10.
go back to reference Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE: Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005, 33 (10): 1579-1602. 10.1177/0363546505279913.CrossRefPubMed Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE: Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005, 33 (10): 1579-1602. 10.1177/0363546505279913.CrossRefPubMed
11.
go back to reference Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE: Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005, 33 (11): 1751-1767. 10.1177/0363546505279922.CrossRefPubMed Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE: Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005, 33 (11): 1751-1767. 10.1177/0363546505279922.CrossRefPubMed
12.
go back to reference Hurd WA M, Snyder Mackler L: Management of the Athlete With Acute Anterior Cruciate Ligament Deficiency. Sports Health Multidisciplinary Approach. 2009, 1: 39-46. 10.1177/1941738108326977.CrossRef Hurd WA M, Snyder Mackler L: Management of the Athlete With Acute Anterior Cruciate Ligament Deficiency. Sports Health Multidisciplinary Approach. 2009, 1: 39-46. 10.1177/1941738108326977.CrossRef
13.
go back to reference Akima H, Furukawa T: Atrophy of thigh muscles after meniscal lesions and arthroscopic partial menisectomy. Knee Surg Sports Traumatol Arthrosc. 2005, 13 (8): 632-637. 10.1007/s00167-004-0602-9.CrossRefPubMed Akima H, Furukawa T: Atrophy of thigh muscles after meniscal lesions and arthroscopic partial menisectomy. Knee Surg Sports Traumatol Arthrosc. 2005, 13 (8): 632-637. 10.1007/s00167-004-0602-9.CrossRefPubMed
14.
go back to reference Cuk TLSP, Stefancic M: Lateral Asymmetry of Human Long Bones. Variability Evol. 2001, 9: 19-32. Cuk TLSP, Stefancic M: Lateral Asymmetry of Human Long Bones. Variability Evol. 2001, 9: 19-32.
15.
go back to reference Chhibber SR, Singh I: Asymmetry in muscle weight and one-sided dominance in the human lower limbs. J Anat. 1970, 106 (Pt 3): 553-556.PubMedPubMedCentral Chhibber SR, Singh I: Asymmetry in muscle weight and one-sided dominance in the human lower limbs. J Anat. 1970, 106 (Pt 3): 553-556.PubMedPubMedCentral
16.
go back to reference Van der Harst JJ, Gokeler A, Hof AL: Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg. Clin Biomech (Bristol, Avon). 2007, 22 (6): 674-680. 10.1016/j.clinbiomech.2007.02.007.CrossRef Van der Harst JJ, Gokeler A, Hof AL: Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg. Clin Biomech (Bristol, Avon). 2007, 22 (6): 674-680. 10.1016/j.clinbiomech.2007.02.007.CrossRef
17.
go back to reference Matava MJ, Freehill AK, Grutzner S, Shannon W: Limb dominance as a potential etiologic factor in noncontact anterior cruciate ligament tears. J Knee Surg. 2002, 15 (1): 11-16.PubMed Matava MJ, Freehill AK, Grutzner S, Shannon W: Limb dominance as a potential etiologic factor in noncontact anterior cruciate ligament tears. J Knee Surg. 2002, 15 (1): 11-16.PubMed
18.
go back to reference Peters M: Footedness: asymmetries in foot preference and skill and neuropsychological assessment of foot movement. Psychol Bull. 1988, 103 (2): 179-192.CrossRefPubMed Peters M: Footedness: asymmetries in foot preference and skill and neuropsychological assessment of foot movement. Psychol Bull. 1988, 103 (2): 179-192.CrossRefPubMed
19.
go back to reference Palmieri-Smith RM, Thomas AC, Wojtys EM: Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008, 27 (3): 405-424. 10.1016/j.csm.2008.02.001. vii-ixCrossRefPubMed Palmieri-Smith RM, Thomas AC, Wojtys EM: Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008, 27 (3): 405-424. 10.1016/j.csm.2008.02.001. vii-ixCrossRefPubMed
20.
go back to reference Berchuck M, Andriacchi TP, Bach BR, Reider B: Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am. 1990, 72 (6): 871-877.PubMed Berchuck M, Andriacchi TP, Bach BR, Reider B: Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am. 1990, 72 (6): 871-877.PubMed
21.
go back to reference Brophy R, Silvers HJ, Gonzales T, Mandelbaum BR: Gender influences: the role of leg dominance in ACL injury among soccer players. Br J Sports Med. 2010, 44 (10): 694-697. 10.1136/bjsm.2008.051243.CrossRefPubMed Brophy R, Silvers HJ, Gonzales T, Mandelbaum BR: Gender influences: the role of leg dominance in ACL injury among soccer players. Br J Sports Med. 2010, 44 (10): 694-697. 10.1136/bjsm.2008.051243.CrossRefPubMed
22.
go back to reference Tegner Y, Lysholm J: Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985, 198: 43-49.PubMed Tegner Y, Lysholm J: Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985, 198: 43-49.PubMed
23.
go back to reference Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD: Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001, 29 (5): 600-613.PubMed Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD: Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001, 29 (5): 600-613.PubMed
24.
go back to reference Strandberg S, Wretling ML, Wredmark T, Shalabi A: Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imagin. 2010, 10: 08-10.1186/1471-2342-10-8.CrossRef Strandberg S, Wretling ML, Wredmark T, Shalabi A: Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imagin. 2010, 10: 08-10.1186/1471-2342-10-8.CrossRef
25.
go back to reference Montgomery DC: Design and Analysis of Experiments, 3 ed edn. 1991, New York: John Wiley & Sons Montgomery DC: Design and Analysis of Experiments, 3 ed edn. 1991, New York: John Wiley & Sons
26.
go back to reference Daniel WW: Biostatistics: A Foundation for Analysis in the Health Sciences, 6th ed edn. 1995, New York: John Wiley & Sons Daniel WW: Biostatistics: A Foundation for Analysis in the Health Sciences, 6th ed edn. 1995, New York: John Wiley & Sons
27.
go back to reference Shultz SJ, Nguyen AD: Bilateral Asymmetries in clinical measures of lower-extremity Anatomic characteristics. Clin J Sport Med. 2007, 17 (5): 357-361. 10.1097/JSM.0b013e31811df950.CrossRefPubMed Shultz SJ, Nguyen AD: Bilateral Asymmetries in clinical measures of lower-extremity Anatomic characteristics. Clin J Sport Med. 2007, 17 (5): 357-361. 10.1097/JSM.0b013e31811df950.CrossRefPubMed
28.
go back to reference Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE: The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009, 19 (1): 3-8. 10.1097/JSM.0b013e318190bddb.CrossRefPubMed Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE: The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009, 19 (1): 3-8. 10.1097/JSM.0b013e318190bddb.CrossRefPubMed
29.
go back to reference Tate CM, Williams GN, Barrance PJ, Buchanan TS: Lower extremity muscle morphology in young athletes: an MRI-based analysis. Med Sci Sports Exerc. 2006, 38 (1): 122-128. 10.1249/01.mss.0000179400.67734.01.CrossRefPubMed Tate CM, Williams GN, Barrance PJ, Buchanan TS: Lower extremity muscle morphology in young athletes: an MRI-based analysis. Med Sci Sports Exerc. 2006, 38 (1): 122-128. 10.1249/01.mss.0000179400.67734.01.CrossRefPubMed
30.
go back to reference Hunter SK, Thompson MW, Adams RD: Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. J Gerontol A Biol Sci Med Sci. 2000, 55 (6): B264-273. 10.1093/gerona/55.6.B264.CrossRefPubMed Hunter SK, Thompson MW, Adams RD: Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. J Gerontol A Biol Sci Med Sci. 2000, 55 (6): B264-273. 10.1093/gerona/55.6.B264.CrossRefPubMed
31.
go back to reference Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE: Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007, 35 (2): 235-241.CrossRefPubMed Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE: Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007, 35 (2): 235-241.CrossRefPubMed
32.
go back to reference Negrete RJ, Schick EA, Cooper JP: Lower-limb dominance as a possible etiologic factor in noncontact anterior cruciate ligament tears. J Strength Cond Res. 2007, 21 (1): 270-273. 10.1519/00124278-200702000-00048.CrossRefPubMed Negrete RJ, Schick EA, Cooper JP: Lower-limb dominance as a possible etiologic factor in noncontact anterior cruciate ligament tears. J Strength Cond Res. 2007, 21 (1): 270-273. 10.1519/00124278-200702000-00048.CrossRefPubMed
33.
go back to reference Ruedl G, Webhofer M, Helle K, Strobl M, Schranz A, Fink C, Gatterer H, Burtscher M: Leg dominance is a risk factor for noncontact anterior cruciate ligament injuries in female recreational skiers. Am J Sports Med. 2012, 10.1177/0363546512439027. AJSM PreView, published on March 16, 2012 as Ruedl G, Webhofer M, Helle K, Strobl M, Schranz A, Fink C, Gatterer H, Burtscher M: Leg dominance is a risk factor for noncontact anterior cruciate ligament injuries in female recreational skiers. Am J Sports Med. 2012, 10.1177/0363546512439027. AJSM PreView, published on March 16, 2012 as
Metadata
Title
Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: aspects on using non-injured leg as control
Authors
Sören Strandberg
Maria Lindström
Marie-Louise Wretling
Peter Aspelin
Adel Shalabi
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2013
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-14-150

Other articles of this Issue 1/2013

BMC Musculoskeletal Disorders 1/2013 Go to the issue