Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2011

Open Access 01-12-2011 | Research article

Decrease of physical activity level in adolescents with limb fractures: an accelerometry-based activity monitor study

Authors: Dimitri Ceroni, Xavier Martin, Cécile Delhumeau, Nathalie Farpour-Lambert

Published in: BMC Musculoskeletal Disorders | Issue 1/2011

Login to get access

Abstract

Background

Immobilization and associated periods of inactivity can cause osteopenia, the physiological response of the bone to disuse. Mechanical loading plays an essential role in maintaining bone integrity. Skeletal fractures represent one cause of reduction of the physical activity (PA) level in adolescents. The purpose of this study was to quantify the reduction of PA in adolescents with limb fractures during the cast immobilization period compared with healthy controls.

Methods

Two hundred twenty adolescents were divided into three groups: those with upper limb fractures (50 cases); lower limb fractures (50 cases); and healthy cases (120 cases). Patients and their healthy peers were matched for gender, age, and seasonal assessment of PA. PA level was assessed during cast immobilization by accelerometer. Time spent in PA in each of the different intensity levels - sedentary, light, moderate, and vigorous - was determined for each participant and expressed in minutes and as a percentage of total valid time.

Results

Reduction in PA during cast immobilization was statistically significant in patients with limb fractures compared to healthy controls. The total PA count (total number of counts/min) was significantly lower in those with upper and lower limb fractures (-30.1% and -62.4%, respectively) compared with healthy controls (p < 0.0001 and p = 0.0003, respectively). Time spent in moderate-to-vigorous PA by patients with upper and lower limb injuries decreased by 36.9% (p = 0.0003) and 76.6% (p < 0.0001), respectively, and vigorous PA was reduced by 41.4% (p = 0.0008) and 84.4% (p < 0.0001), respectively.

Conclusions

PA measured by accelerometer is a useful and valid tool to assess the decrease of PA level in adolescents with limb fractures. As cast immobilization and reduced PA are known to induce bone mineral loss, this study provides important information to quantify the decrease of skeletal loading in this patient population. The observed reduction of high intensity skeletal loading due to the decrease in vigorous PA may explain osteopenia due to disuse, and these data should be kept in mind by trauma practitioners to avoid any unnecessary prolongation of the cast immobilization period.
Appendix
Available only for authorised users
Literature
1.
go back to reference Saggese G, Baroncelli GI, Bertelloni S: Osteoporosis in children and adolescents: diagnosis, risk factors, and prevention. J Pediatr Endocrinol Metab. 2001, 14 (7): 833-59. 10.1515/JPEM.2001.14.7.833.CrossRefPubMed Saggese G, Baroncelli GI, Bertelloni S: Osteoporosis in children and adolescents: diagnosis, risk factors, and prevention. J Pediatr Endocrinol Metab. 2001, 14 (7): 833-59. 10.1515/JPEM.2001.14.7.833.CrossRefPubMed
2.
go back to reference Barr SI, McKay HA: Nutrition, exercise, and bone status in youth. Int J Sport Nutr. 1998, 8 (2): 124-42.PubMed Barr SI, McKay HA: Nutrition, exercise, and bone status in youth. Int J Sport Nutr. 1998, 8 (2): 124-42.PubMed
3.
go back to reference Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P: International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003, 35 (8): 1381-95. 10.1249/01.MSS.0000078924.61453.FB.CrossRefPubMed Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P: International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003, 35 (8): 1381-95. 10.1249/01.MSS.0000078924.61453.FB.CrossRefPubMed
4.
go back to reference Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R: Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000, 15 (11): 2245-50. 10.1359/jbmr.2000.15.11.2245.CrossRefPubMed Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R: Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000, 15 (11): 2245-50. 10.1359/jbmr.2000.15.11.2245.CrossRefPubMed
5.
go back to reference Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR: American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004, 36 (11): 1985-96. 10.1249/01.MSS.0000142662.21767.58.CrossRefPubMed Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR: American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004, 36 (11): 1985-96. 10.1249/01.MSS.0000142662.21767.58.CrossRefPubMed
6.
go back to reference Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I: High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000, 11 (12): 1010-7.CrossRefPubMed Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I: High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000, 11 (12): 1010-7.CrossRefPubMed
7.
go back to reference Bailey DA: The Saskatchewan Pediatric Bone Mineral Accrual Study: bone mineral acquisition during the growing years. Int J Sports Med. 1997, 18 (Suppl 3): S191-4.CrossRefPubMed Bailey DA: The Saskatchewan Pediatric Bone Mineral Accrual Study: bone mineral acquisition during the growing years. Int J Sports Med. 1997, 18 (Suppl 3): S191-4.CrossRefPubMed
8.
go back to reference Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP: Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992, 75 (4): 1060-5. 10.1210/jc.75.4.1060.PubMed Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP: Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992, 75 (4): 1060-5. 10.1210/jc.75.4.1060.PubMed
9.
go back to reference Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC: Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991, 6 (11): 1227-33.CrossRefPubMed Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC: Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991, 6 (11): 1227-33.CrossRefPubMed
10.
go back to reference Cassell C, Benedict M, Specker B: Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc. 1996, 28 (10): 1243-6.CrossRefPubMed Cassell C, Benedict M, Specker B: Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc. 1996, 28 (10): 1243-6.CrossRefPubMed
11.
go back to reference Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL: Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998, 8 (2): 152-8. 10.1007/BF02672512.CrossRefPubMed Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL: Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998, 8 (2): 152-8. 10.1007/BF02672512.CrossRefPubMed
12.
go back to reference Khan KM, Bennell KL, Hopper JL, Flicker L, Nowson CA, Sherwin AJ, Crichton KJ, Harcourt PR, Wark JD: Self-reported ballet classes undertaken at age 10-12 years and hip bone mineral density in later life. Osteoporos Int. 1998, 8 (2): 165-73. 10.1007/BF02672514.CrossRefPubMed Khan KM, Bennell KL, Hopper JL, Flicker L, Nowson CA, Sherwin AJ, Crichton KJ, Harcourt PR, Wark JD: Self-reported ballet classes undertaken at age 10-12 years and hip bone mineral density in later life. Osteoporos Int. 1998, 8 (2): 165-73. 10.1007/BF02672514.CrossRefPubMed
13.
go back to reference Fuchs RK, Snow CM: Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002, 141 (3): 357-62. 10.1067/mpd.2002.127275.CrossRefPubMed Fuchs RK, Snow CM: Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002, 141 (3): 357-62. 10.1067/mpd.2002.127275.CrossRefPubMed
14.
go back to reference MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA: A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003, 112 (6 Pt 1): e447-CrossRefPubMed MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA: A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003, 112 (6 Pt 1): e447-CrossRefPubMed
15.
go back to reference MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM: Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002, 17 (5): 834-44. 10.1359/jbmr.2002.17.5.834.CrossRefPubMed MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM: Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002, 17 (5): 834-44. 10.1359/jbmr.2002.17.5.834.CrossRefPubMed
16.
go back to reference McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM: Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000, 136 (2): 156-62. 10.1016/S0022-3476(00)70095-3.CrossRefPubMed McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM: Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000, 136 (2): 156-62. 10.1016/S0022-3476(00)70095-3.CrossRefPubMed
17.
go back to reference Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD: Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997, 12 (9): 1453-62. 10.1359/jbmr.1997.12.9.1453.CrossRefPubMed Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD: Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997, 12 (9): 1453-62. 10.1359/jbmr.1997.12.9.1453.CrossRefPubMed
18.
go back to reference Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ: A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002, 17 (3): 363-72. 10.1359/jbmr.2002.17.3.363.CrossRefPubMed Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ: A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002, 17 (3): 363-72. 10.1359/jbmr.2002.17.3.363.CrossRefPubMed
19.
go back to reference Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C: Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000, 355 (9215): 1607-11. 10.1016/S0140-6736(00)02217-0.CrossRefPubMed Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C: Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000, 355 (9215): 1607-11. 10.1016/S0140-6736(00)02217-0.CrossRefPubMed
20.
go back to reference Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V: Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord. 2000, 38 (1): 26-32.CrossRefPubMed Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V: Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord. 2000, 38 (1): 26-32.CrossRefPubMed
21.
go back to reference Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM: Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990, 5 (8): 843-50.CrossRefPubMed Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM: Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990, 5 (8): 843-50.CrossRefPubMed
22.
go back to reference Szalay EA, Harriman D, Eastlund B, Mercer D: Quantifying postoperative bone loss in children. Journal of Pediatric Orthopedics. 2008, 28: 320-3. 10.1097/BPO.0b013e318168c75e.CrossRefPubMed Szalay EA, Harriman D, Eastlund B, Mercer D: Quantifying postoperative bone loss in children. Journal of Pediatric Orthopedics. 2008, 28: 320-3. 10.1097/BPO.0b013e318168c75e.CrossRefPubMed
23.
go back to reference Brage S, Wedderkopp N, Ekelund U, Franks PW, Wareham NJ, Andersen LB, Froberg K: Objectively measured physical activity correlates with indices of insulin resistance in Danish children. The European Youth Heart Study (EYHS). Int J Obes Relat Metab Disord. 2004, 28 (11): 1503-8. 10.1038/sj.ijo.0802772.CrossRefPubMed Brage S, Wedderkopp N, Ekelund U, Franks PW, Wareham NJ, Andersen LB, Froberg K: Objectively measured physical activity correlates with indices of insulin resistance in Danish children. The European Youth Heart Study (EYHS). Int J Obes Relat Metab Disord. 2004, 28 (11): 1503-8. 10.1038/sj.ijo.0802772.CrossRefPubMed
24.
go back to reference Ekelund U, Aman J, Westerterp K: Is the ArteACC index a valid indicator of free-living physical activity in adolescents?. Obes Res. 2003, 11 (6): 793-801. 10.1038/oby.2003.110.CrossRefPubMed Ekelund U, Aman J, Westerterp K: Is the ArteACC index a valid indicator of free-living physical activity in adolescents?. Obes Res. 2003, 11 (6): 793-801. 10.1038/oby.2003.110.CrossRefPubMed
25.
go back to reference Riddoch CJ, Bo Andersen L, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, Cooper AR, Ekelund U: Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004, 36 (1): 86-92. 10.1249/01.MSS.0000106174.43932.92.CrossRefPubMed Riddoch CJ, Bo Andersen L, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, Cooper AR, Ekelund U: Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004, 36 (1): 86-92. 10.1249/01.MSS.0000106174.43932.92.CrossRefPubMed
26.
go back to reference Schmidt MD, Freedson PS, Chasan-Taber L: Estimating physical activity using the CSA accelerometer and a physical activity log. Med Sci Sports Exerc. 2003, 35 (9): 1605-11. 10.1249/01.MSS.0000084421.97661.17.CrossRefPubMed Schmidt MD, Freedson PS, Chasan-Taber L: Estimating physical activity using the CSA accelerometer and a physical activity log. Med Sci Sports Exerc. 2003, 35 (9): 1605-11. 10.1249/01.MSS.0000084421.97661.17.CrossRefPubMed
27.
go back to reference Treuth MS, Sherwood NE, Butte NF, McClanahan B, Obarzanek E, Zhou A, Ayers C, Adolph A, Jordan J, Jacobs DR, Rochon J: Validity and reliability of activity measures in African-American girls for GEMS. Med Sci Sports Exerc. 2003, 35 (3): 532-9. 10.1249/01.MSS.0000053702.03884.3F.CrossRefPubMed Treuth MS, Sherwood NE, Butte NF, McClanahan B, Obarzanek E, Zhou A, Ayers C, Adolph A, Jordan J, Jacobs DR, Rochon J: Validity and reliability of activity measures in African-American girls for GEMS. Med Sci Sports Exerc. 2003, 35 (3): 532-9. 10.1249/01.MSS.0000053702.03884.3F.CrossRefPubMed
28.
go back to reference Hayden-Wade HA, Coleman KJ, Sallis JF, Armstrong C: Validation of the telephone and in-person interview versions of the 7-day PAR. Med Sci Sports Exerc. 2003, 35 (5): 801-9. 10.1249/01.MSS.0000064941.43869.4E.CrossRefPubMed Hayden-Wade HA, Coleman KJ, Sallis JF, Armstrong C: Validation of the telephone and in-person interview versions of the 7-day PAR. Med Sci Sports Exerc. 2003, 35 (5): 801-9. 10.1249/01.MSS.0000064941.43869.4E.CrossRefPubMed
29.
go back to reference Ekelund U, Sardinha LB, Anderssen SA, Harro M, Franks PW, Brage S, Cooper AR, Andersen LB, Riddoch C, Froberg K: Associations between objectively assessed physical activity and indicators of body fatness in 9- to 10-y-old European children: a population-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr. 2004, 80 (3): 584-90.PubMed Ekelund U, Sardinha LB, Anderssen SA, Harro M, Franks PW, Brage S, Cooper AR, Andersen LB, Riddoch C, Froberg K: Associations between objectively assessed physical activity and indicators of body fatness in 9- to 10-y-old European children: a population-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr. 2004, 80 (3): 584-90.PubMed
30.
go back to reference Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, Rowland T, Trost S, Trudeau F: Evidence Based Physical Activity for School-age Youth. The Journal of Pediatrics. 2005, 146 (6): 732-737. 10.1016/j.jpeds.2005.01.055.CrossRefPubMed Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, Rowland T, Trost S, Trudeau F: Evidence Based Physical Activity for School-age Youth. The Journal of Pediatrics. 2005, 146 (6): 732-737. 10.1016/j.jpeds.2005.01.055.CrossRefPubMed
31.
go back to reference Jiménez-Pavón D, Kelly J, Reilly JJ: Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int J Pediatr Obes. 2010, 5 (1): 3-18. 10.3109/17477160903067601.CrossRefPubMed Jiménez-Pavón D, Kelly J, Reilly JJ: Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int J Pediatr Obes. 2010, 5 (1): 3-18. 10.3109/17477160903067601.CrossRefPubMed
32.
go back to reference Freedson P, Pober D, Janz KF: Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005, 37 (11 Suppl): S523-30.CrossRefPubMed Freedson P, Pober D, Janz KF: Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005, 37 (11 Suppl): S523-30.CrossRefPubMed
33.
go back to reference Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R: Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility?. J Bone Miner Res. 2006, 21 (4): 501-7.CrossRefPubMed Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R: Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility?. J Bone Miner Res. 2006, 21 (4): 501-7.CrossRefPubMed
34.
go back to reference Jones IE, Williams SM, Dow N, Goulding A: How many children remain fracture-free during growth? a longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int. 2002, 13 (12): 990-5. 10.1007/s001980200137.CrossRefPubMed Jones IE, Williams SM, Dow N, Goulding A: How many children remain fracture-free during growth? a longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int. 2002, 13 (12): 990-5. 10.1007/s001980200137.CrossRefPubMed
35.
go back to reference Giangregorio L, Blimkie CJ: Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis. Sports Med. 2002, 32 (7): 459-76. 10.2165/00007256-200232070-00005.CrossRefPubMed Giangregorio L, Blimkie CJ: Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis. Sports Med. 2002, 32 (7): 459-76. 10.2165/00007256-200232070-00005.CrossRefPubMed
36.
go back to reference Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, Sirard J: Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002, 34 (2): 350-5. 10.1097/00005768-200202000-00025.CrossRefPubMed Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, Sirard J: Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002, 34 (2): 350-5. 10.1097/00005768-200202000-00025.CrossRefPubMed
37.
go back to reference Nilsson AEU, Yngve A, Sjöström M: Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Pediatr Exerc Sci. 2002, 14: 87-96. Nilsson AEU, Yngve A, Sjöström M: Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Pediatr Exerc Sci. 2002, 14: 87-96.
Metadata
Title
Decrease of physical activity level in adolescents with limb fractures: an accelerometry-based activity monitor study
Authors
Dimitri Ceroni
Xavier Martin
Cécile Delhumeau
Nathalie Farpour-Lambert
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2011
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-12-87

Other articles of this Issue 1/2011

BMC Musculoskeletal Disorders 1/2011 Go to the issue