Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2011

Open Access 01-12-2011 | Research article

Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

Authors: Ryusei Imabuchi, Yoshihiro Ohmiya, Hyuck Joon Kwon, Shin Onodera, Nobuto Kitamura, Takayuki Kurokawa, Jian Ping Gong, Kazunori Yasuda

Published in: BMC Musculoskeletal Disorders | Issue 1/2011

Login to get access

Abstract

Background

We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage.

Methods

We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations.

Results

The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes.

Conclusions

The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cremer MA, Rosloniec EF, Kang AH: The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med. 1998, 76: 275-88. 10.1007/s001090050217.CrossRefPubMed Cremer MA, Rosloniec EF, Kang AH: The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med. 1998, 76: 275-88. 10.1007/s001090050217.CrossRefPubMed
2.
go back to reference Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New Engl J Med. 1994, 331: 889-95. 10.1056/NEJM199410063311401.CrossRefPubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New Engl J Med. 1994, 331: 889-95. 10.1056/NEJM199410063311401.CrossRefPubMed
4.
go back to reference Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003, 85: 17-24. 10.1302/0301-620X.85B1.13948.CrossRefPubMed Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003, 85: 17-24. 10.1302/0301-620X.85B1.13948.CrossRefPubMed
5.
go back to reference Hangody L, Füles P: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003, 85: 25-32.PubMed Hangody L, Füles P: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003, 85: 25-32.PubMed
6.
go back to reference Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M: Articular cartilage repair using tissue engineering technique--novel approach with minimally invasive procedure. Artif Organs. 2004, 28: 28-32. 10.1111/j.1525-1594.2004.07317.x.CrossRefPubMed Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M: Articular cartilage repair using tissue engineering technique--novel approach with minimally invasive procedure. Artif Organs. 2004, 28: 28-32. 10.1111/j.1525-1594.2004.07317.x.CrossRefPubMed
7.
go back to reference Smith GD, Knutsen G, Richardson JB: A clinical review of cartilage repair techniques. J Bone Joint Surg Br. 2005, 87: 445-9. 10.1302/0301-620X.87B4.15971.CrossRefPubMed Smith GD, Knutsen G, Richardson JB: A clinical review of cartilage repair techniques. J Bone Joint Surg Br. 2005, 87: 445-9. 10.1302/0301-620X.87B4.15971.CrossRefPubMed
8.
go back to reference Feczkó P, Hangody L, Varga J, Bartha L, Diószegi Z, Bodó G, Kendik Z: Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy. 2003, 19: 755-61. 10.1016/S0749-8063(03)00402-X.CrossRefPubMed Feczkó P, Hangody L, Varga J, Bartha L, Diószegi Z, Bodó G, Kendik Z: Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy. 2003, 19: 755-61. 10.1016/S0749-8063(03)00402-X.CrossRefPubMed
9.
go back to reference Driesang IM, Hunziker EB: Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res. 2000, 18: 909-11. 10.1002/jor.1100180609.CrossRefPubMed Driesang IM, Hunziker EB: Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res. 2000, 18: 909-11. 10.1002/jor.1100180609.CrossRefPubMed
10.
go back to reference Micheli LJ, Browne JE, Erggelet C, Fu F, Mandelbaum B, Moseley JB, Zurakowski D: Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med. 2001, 11: 223-8. 10.1097/00042752-200110000-00003.CrossRefPubMed Micheli LJ, Browne JE, Erggelet C, Fu F, Mandelbaum B, Moseley JB, Zurakowski D: Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med. 2001, 11: 223-8. 10.1097/00042752-200110000-00003.CrossRefPubMed
11.
go back to reference Redman SN, Oldfield SF, Archer CW: Current strategies for articular cartilage repair. Eur Cell Mater. 2005, 9: 23-32.PubMed Redman SN, Oldfield SF, Archer CW: Current strategies for articular cartilage repair. Eur Cell Mater. 2005, 9: 23-32.PubMed
12.
go back to reference Steadman JR, Rodkey WG, Rodrigo JJ: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001, 391: 362-9.CrossRef Steadman JR, Rodkey WG, Rodrigo JJ: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001, 391: 362-9.CrossRef
13.
go back to reference Ahasan T, Sah RL: Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage. 1999, 7: 29-40. 10.1053/joca.1998.0160.CrossRef Ahasan T, Sah RL: Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage. 1999, 7: 29-40. 10.1053/joca.1998.0160.CrossRef
14.
go back to reference Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW: Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage. 2003, 11: 810-20. 10.1016/S1063-4584(03)00164-X.CrossRefPubMed Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW: Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage. 2003, 11: 810-20. 10.1016/S1063-4584(03)00164-X.CrossRefPubMed
15.
go back to reference Shapiro F, Koide S, Glimcher MJ: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993, 75: 532-53.PubMed Shapiro F, Koide S, Glimcher MJ: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993, 75: 532-53.PubMed
16.
go back to reference Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 2006, 126: 677-89. 10.1016/j.cell.2006.06.044.CrossRefPubMed Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 2006, 126: 677-89. 10.1016/j.cell.2006.06.044.CrossRefPubMed
17.
go back to reference Gong JP, Katsuyama Y, Kurokawa T, Osada Y: Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003, 15: 1155-8. 10.1002/adma.200304907.CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y: Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003, 15: 1155-8. 10.1002/adma.200304907.CrossRef
18.
go back to reference Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M: Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005, 26: 4468-75. 10.1016/j.biomaterials.2004.11.021.CrossRefPubMed Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M: Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005, 26: 4468-75. 10.1016/j.biomaterials.2004.11.021.CrossRefPubMed
19.
go back to reference Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM: Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A. 2007, 81: 373-80.CrossRefPubMed Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM: Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A. 2007, 81: 373-80.CrossRefPubMed
20.
go back to reference Tanabe Y, Yasuda K, Azuma C, Taniguro H, Onodera S, Suzuki A, Chen YM: Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med. 2008, 19: 1379-87. 10.1007/s10856-007-3255-7.CrossRefPubMed Tanabe Y, Yasuda K, Azuma C, Taniguro H, Onodera S, Suzuki A, Chen YM: Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med. 2008, 19: 1379-87. 10.1007/s10856-007-3255-7.CrossRefPubMed
21.
go back to reference Yasuda K, Kitamura N, Gong JP, Arakaki K, Kwon HJ, Onodera S, Chen YM: A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol Biosci. 2009, 9: 307-16. 10.1002/mabi.200800223.CrossRefPubMed Yasuda K, Kitamura N, Gong JP, Arakaki K, Kwon HJ, Onodera S, Chen YM: A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol Biosci. 2009, 9: 307-16. 10.1002/mabi.200800223.CrossRefPubMed
22.
go back to reference Kwon HJ, Yasuda K, Ohmiya Y, Honma KI, Chen YM, Gong JP: In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater. 2010, 6: 494-501. 10.1016/j.actbio.2009.07.033.CrossRefPubMed Kwon HJ, Yasuda K, Ohmiya Y, Honma KI, Chen YM, Gong JP: In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater. 2010, 6: 494-501. 10.1016/j.actbio.2009.07.033.CrossRefPubMed
23.
go back to reference Kitamura N, Yasuda K, Ogawa M, Arakaki K, Kai S, Onodera S, Kurokawa T: Induction of Spontaneous Hyaline Cartilage Regeneration Using a Double-Network Gel: Efficacy of a Novel Therapeutic Strategy for an Articular Cartilage Defect. Am J Sports Med. 2011, 39: 1160-9. 10.1177/0363546511399383.CrossRefPubMed Kitamura N, Yasuda K, Ogawa M, Arakaki K, Kai S, Onodera S, Kurokawa T: Induction of Spontaneous Hyaline Cartilage Regeneration Using a Double-Network Gel: Efficacy of a Novel Therapeutic Strategy for an Articular Cartilage Defect. Am J Sports Med. 2011, 39: 1160-9. 10.1177/0363546511399383.CrossRefPubMed
24.
go back to reference Yokota M, Yasuda K, Kitamura N, Arakaki K, Onodera S, Kurokawa T, Gong JP: Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskel Disord. 2011, 12: 49-10.1186/1471-2474-12-49.CrossRef Yokota M, Yasuda K, Kitamura N, Arakaki K, Onodera S, Kurokawa T, Gong JP: Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskel Disord. 2011, 12: 49-10.1186/1471-2474-12-49.CrossRef
25.
go back to reference Kwon HJ, Akimoto H, Ohmiya Y, Honma K, Yasuda K: Gene expression profile of rabbit cartilage by expressed sequence tag analysis. Gene. 2008, 424: 147-52. 10.1016/j.gene.2008.07.036.CrossRefPubMed Kwon HJ, Akimoto H, Ohmiya Y, Honma K, Yasuda K: Gene expression profile of rabbit cartilage by expressed sequence tag analysis. Gene. 2008, 424: 147-52. 10.1016/j.gene.2008.07.036.CrossRefPubMed
26.
go back to reference Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G: Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997, 386: 78-81. 10.1038/386078a0.CrossRefPubMed Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G: Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997, 386: 78-81. 10.1038/386078a0.CrossRefPubMed
27.
go back to reference Zhao R, Yeung SCJ, Chen J, Iwakuma T, Su CH, Chen B, Qu C: Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest. 2011, 121: 851-65. 10.1172/JCI44111.CrossRefPubMedPubMedCentral Zhao R, Yeung SCJ, Chen J, Iwakuma T, Su CH, Chen B, Qu C: Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest. 2011, 121: 851-65. 10.1172/JCI44111.CrossRefPubMedPubMedCentral
28.
go back to reference Yao L, Kawakami Y, Kawakami T: The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA. 1994, 91: 9175-9. 10.1073/pnas.91.19.9175.CrossRefPubMedPubMedCentral Yao L, Kawakami Y, Kawakami T: The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA. 1994, 91: 9175-9. 10.1073/pnas.91.19.9175.CrossRefPubMedPubMedCentral
29.
go back to reference Demoor-Fossard M, Galera P, Santra M, Iozzo RV, Pujol JP, Redini F: A composite element binding the vitamin D receptor and the retinoic × receptor alpha mediates the transforming growth factor-beta inhibition of decorin gene expression in articular chondrocytes. J Biol Chem. 2001, 276: 36983-92. 10.1074/jbc.M011442200.CrossRefPubMed Demoor-Fossard M, Galera P, Santra M, Iozzo RV, Pujol JP, Redini F: A composite element binding the vitamin D receptor and the retinoic × receptor alpha mediates the transforming growth factor-beta inhibition of decorin gene expression in articular chondrocytes. J Biol Chem. 2001, 276: 36983-92. 10.1074/jbc.M011442200.CrossRefPubMed
30.
go back to reference Kalamajski S, Oldberg A: Fibromodulin binds collagen type I via Glu-353 and Lys-355 in leucine-rich repeat 11. J Biol Chem. 2007, 282: 26740-5. 10.1074/jbc.M704026200.CrossRefPubMed Kalamajski S, Oldberg A: Fibromodulin binds collagen type I via Glu-353 and Lys-355 in leucine-rich repeat 11. J Biol Chem. 2007, 282: 26740-5. 10.1074/jbc.M704026200.CrossRefPubMed
31.
go back to reference Trombetta JM, Bradshaw AD: SPARC/osteonectin functions to maintain homeostasis of the collagenous extracellular matrix in the periodontal ligament. J Histochem Cytochem. 2010, 58: 871-9. 10.1369/jhc.2010.956144.CrossRefPubMedPubMedCentral Trombetta JM, Bradshaw AD: SPARC/osteonectin functions to maintain homeostasis of the collagenous extracellular matrix in the periodontal ligament. J Histochem Cytochem. 2010, 58: 871-9. 10.1369/jhc.2010.956144.CrossRefPubMedPubMedCentral
32.
go back to reference Wang C, Valtavaara M, Myllyla R: Lack of collagen type specificity for lysyl hydroxylase isoforms. DNA Cell Biol. 2000, 19: 71-7. 10.1089/104454900314582.CrossRefPubMed Wang C, Valtavaara M, Myllyla R: Lack of collagen type specificity for lysyl hydroxylase isoforms. DNA Cell Biol. 2000, 19: 71-7. 10.1089/104454900314582.CrossRefPubMed
33.
go back to reference Mansson B, Wenglen C, Morgelin M, Saxne T, Heinegard D: Association of Chondroadherin with Collagen Type II. J Biol Chem. 2001, 276: 32883-5. 10.1074/jbc.M101680200.CrossRefPubMed Mansson B, Wenglen C, Morgelin M, Saxne T, Heinegard D: Association of Chondroadherin with Collagen Type II. J Biol Chem. 2001, 276: 32883-5. 10.1074/jbc.M101680200.CrossRefPubMed
34.
go back to reference Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stepheson RC: Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003, 130: 2779-91. 10.1242/dev.00505.CrossRefPubMedPubMedCentral Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stepheson RC: Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003, 130: 2779-91. 10.1242/dev.00505.CrossRefPubMedPubMedCentral
35.
go back to reference Smith RK, Zunino L, Webbon P, Heinegard D: The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol. 1997, 16: 255-71. 10.1016/S0945-053X(97)90014-7.CrossRefPubMed Smith RK, Zunino L, Webbon P, Heinegard D: The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol. 1997, 16: 255-71. 10.1016/S0945-053X(97)90014-7.CrossRefPubMed
36.
go back to reference Rosenberg K, Olsson H, Mörgelin M, Heinegard D: Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem. 1998, 273: 20397-403. 10.1074/jbc.273.32.20397.CrossRefPubMed Rosenberg K, Olsson H, Mörgelin M, Heinegard D: Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem. 1998, 273: 20397-403. 10.1074/jbc.273.32.20397.CrossRefPubMed
37.
go back to reference Kang HC, Chae JH, Kim BS, Han SY, Kim SH, Auh CK, Yang SI: Transcription factor CP2 is involved in activating mBMP4 in mouse mesenchymal stem cells. Mol Cells. 2004, 17: 454-61.PubMed Kang HC, Chae JH, Kim BS, Han SY, Kim SH, Auh CK, Yang SI: Transcription factor CP2 is involved in activating mBMP4 in mouse mesenchymal stem cells. Mol Cells. 2004, 17: 454-61.PubMed
38.
go back to reference Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T: P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J Bone Miner Res. 2003, 18: 1419-29. 10.1359/jbmr.2003.18.8.1419.CrossRefPubMed Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T: P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J Bone Miner Res. 2003, 18: 1419-29. 10.1359/jbmr.2003.18.8.1419.CrossRefPubMed
39.
go back to reference Talapatra S, Wagner JDO, Thompson CB: Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ. 2002, 9: 856-861. 10.1038/sj.cdd.4401078.CrossRefPubMed Talapatra S, Wagner JDO, Thompson CB: Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ. 2002, 9: 856-861. 10.1038/sj.cdd.4401078.CrossRefPubMed
40.
go back to reference Yang L, Carlson SG, McBurney D, Horton WE: Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis. J Biol Chem. 2005, 280: 31156-31165. 10.1074/jbc.M501069200.CrossRefPubMed Yang L, Carlson SG, McBurney D, Horton WE: Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis. J Biol Chem. 2005, 280: 31156-31165. 10.1074/jbc.M501069200.CrossRefPubMed
41.
go back to reference Hall BK, Miyake T: Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol. 1995, 39: 881-93.PubMed Hall BK, Miyake T: Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol. 1995, 39: 881-93.PubMed
42.
go back to reference Blain EJ, Gilbert SJ, Hayes AJ, Duance VC: Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. Matrix Biol. 2006, 25: 398-408. 10.1016/j.matbio.2006.06.002.CrossRefPubMed Blain EJ, Gilbert SJ, Hayes AJ, Duance VC: Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. Matrix Biol. 2006, 25: 398-408. 10.1016/j.matbio.2006.06.002.CrossRefPubMed
43.
go back to reference Dunwoodie SL: The role of hypoxia in development of the mammalian embryo. Dev Cell. 2009, 17: 755-73. 10.1016/j.devcel.2009.11.008.CrossRefPubMed Dunwoodie SL: The role of hypoxia in development of the mammalian embryo. Dev Cell. 2009, 17: 755-73. 10.1016/j.devcel.2009.11.008.CrossRefPubMed
44.
go back to reference Escoubet B, Planes C, Clerici C: Hypoxia increases glyceraldehyde-3-phosphate dehydrogenase transcription in rat alveolar epithelial cells. Biochem Biophys Res Commun. 1999, 266: 156-61. 10.1006/bbrc.1999.1798.CrossRefPubMed Escoubet B, Planes C, Clerici C: Hypoxia increases glyceraldehyde-3-phosphate dehydrogenase transcription in rat alveolar epithelial cells. Biochem Biophys Res Commun. 1999, 266: 156-61. 10.1006/bbrc.1999.1798.CrossRefPubMed
Metadata
Title
Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage
Authors
Ryusei Imabuchi
Yoshihiro Ohmiya
Hyuck Joon Kwon
Shin Onodera
Nobuto Kitamura
Takayuki Kurokawa
Jian Ping Gong
Kazunori Yasuda
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2011
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-12-213

Other articles of this Issue 1/2011

BMC Musculoskeletal Disorders 1/2011 Go to the issue