Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2010

Open Access 01-12-2010 | Technical advance

A custom-made guide-wire positioning device for Hip Surface Replacement Arthroplasty: description and first results

Authors: Martijn Raaijmaakers, Frederik Gelaude, Karla De Smedt, Tim Clijmans, Jeroen Dille, Michiel Mulier

Published in: BMC Musculoskeletal Disorders | Issue 1/2010

Login to get access

Abstract

Background

Hip surface replacement arthroplasty (SRA) can be an alternative for total hip arthroplasty. The short and long-term outcome of hip surface replacement arthroplasty mainly relies on the optimal size and position of the femoral component. This can be defined before surgery with pre-operative templating. Reproducing the optimal, templated femoral implant position during surgery relies on guide wire positioning devices in combination with visual inspection and experience of the surgeon. Another method of transferring the templated position into surgery is by navigation or Computer Assisted Surgery (CAS). Though CAS is documented to increase accurate placement particularly in case of normal hip anatomy, it requires bulky equipment that is not readily available in each centre.

Methods

A custom made neck jig device is presented as well as the results of a pilot study.
The device is produced based on data pre-operatively acquired with CT-scan. The position of the guide wire is chosen as the anatomical axis of the femoral neck. Adjustments to the design of the jig are made based on the orthopedic surgeon's recommendations for the drill direction. The SRA jig is designed as a slightly more-than-hemispherical cage to fit the anterior part of the femoral head. The cage is connected to an anterior neck support. Four knifes are attached on the central arch of the cage. A drill guide cylinder is attached to the cage, thus allowing guide wire positioning as pre-operatively planned.
Custom made devices were tested in 5 patients scheduled for total hip arthroplasty. The orthopedic surgeons reported the practical aspects of the use of the neck-jig device. The retrieved femoral heads were analyzed to assess the achieved drill place in mm deviation from the predefined location and orientation compared to the predefined orientation.

Results

The orthopedic surgeons rated the passive stability, full contact with neck portion of the jig and knife contact with femoral head, positive. There were no guide failures. The jig unique position and the number of steps required to put the guide in place were rated 1, while the complexity to put the guide into place was rated 1-2. In all five cases the guide wire was accurately positioned. Maximum angular deviation was 2.9° and maximum distance between insertion points was 2.1 mm.

Conclusions

Pilot testing of a custom made jig for use during SRA indicated that the device was (1) successfully applied and user friendly and (2) allowed for accurate guide wire placement according to the preoperative plan.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stulberg BN, Trier KK, Naughton M, Zadzilka JD: Results and lessons learned from a United States hip resurfacing investigational device exemption trial. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 21-26. 10.2106/JBJS.H.00718.CrossRefPubMed Stulberg BN, Trier KK, Naughton M, Zadzilka JD: Results and lessons learned from a United States hip resurfacing investigational device exemption trial. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 21-26. 10.2106/JBJS.H.00718.CrossRefPubMed
2.
go back to reference Nunley RM, Della Valle CJ, Barrack RL: Is patient selection important for hip resurfacing?. Clin Orthop Relat Res. 2009, 467 (1): 56-65. 10.1007/s11999-008-0558-z.CrossRefPubMed Nunley RM, Della Valle CJ, Barrack RL: Is patient selection important for hip resurfacing?. Clin Orthop Relat Res. 2009, 467 (1): 56-65. 10.1007/s11999-008-0558-z.CrossRefPubMed
3.
go back to reference Schmalzried TP, Silva M, de la Rosa MA, Choi ES, Fowble VA: Optimizing patient selection and outcomes with total hip resurfacing. Clin Orthop Relat Res. 2005, 441: 200-204. 10.1097/01.blo.0000192354.76792.bb.CrossRefPubMed Schmalzried TP, Silva M, de la Rosa MA, Choi ES, Fowble VA: Optimizing patient selection and outcomes with total hip resurfacing. Clin Orthop Relat Res. 2005, 441: 200-204. 10.1097/01.blo.0000192354.76792.bb.CrossRefPubMed
4.
go back to reference Nall A, Robin J: Spontaneous Recurrent Dislocation After Primary Birmingham Hip Resurfacing: A Rare Complication in a 44-Year-Old Man. J Arthroplasty. 2009 Nall A, Robin J: Spontaneous Recurrent Dislocation After Primary Birmingham Hip Resurfacing: A Rare Complication in a 44-Year-Old Man. J Arthroplasty. 2009
5.
go back to reference Girard J, Lavigne M, Vendittoli PA, Migaud H: Hip resurfacing: current state of knowledge. Rev Chir Orthop Reparatrice Appar Mot. 2008, 94 (8): 715-730.CrossRefPubMed Girard J, Lavigne M, Vendittoli PA, Migaud H: Hip resurfacing: current state of knowledge. Rev Chir Orthop Reparatrice Appar Mot. 2008, 94 (8): 715-730.CrossRefPubMed
6.
go back to reference Su EP, Sheehan M, Su SL: Comparison of Bone Removed During Total Hip Arthroplasty With a Resurfacing or Conventional Femoral Component A Cadaveric Study. J Arthroplasty. 2008 Su EP, Sheehan M, Su SL: Comparison of Bone Removed During Total Hip Arthroplasty With a Resurfacing or Conventional Femoral Component A Cadaveric Study. J Arthroplasty. 2008
7.
go back to reference Girard J, Lavigne M, Vendittoli PA, Roy AG: Biomechanical reconstruction of the hip: a randomised study comparing total hip resurfacing and total hip arthroplasty. J Bone Joint Surg Br. 2006, 88 (6): 721-726. 10.1302/0301-620X.88B6.17447.CrossRefPubMed Girard J, Lavigne M, Vendittoli PA, Roy AG: Biomechanical reconstruction of the hip: a randomised study comparing total hip resurfacing and total hip arthroplasty. J Bone Joint Surg Br. 2006, 88 (6): 721-726. 10.1302/0301-620X.88B6.17447.CrossRefPubMed
8.
go back to reference Beaule PE, Le Duff M, Campbell P, Dorey FJ, Park SH, Amstutz HC: Metal-on-metal surface arthroplasty with a cemented femoral component: a 7-10 year follow-up study. J Arthroplasty. 2004, 19 (8 Suppl 3): 17-22.PubMed Beaule PE, Le Duff M, Campbell P, Dorey FJ, Park SH, Amstutz HC: Metal-on-metal surface arthroplasty with a cemented femoral component: a 7-10 year follow-up study. J Arthroplasty. 2004, 19 (8 Suppl 3): 17-22.PubMed
9.
go back to reference Khan M, Kuiper JH, Edwards D, Robinson E, Richardson JB: Birmingham hip arthroplasty: five to eight years of prospective multicenter results. J Arthroplasty. 2009, 24 (7): 1044-1050. 10.1016/j.arth.2008.07.016.CrossRefPubMed Khan M, Kuiper JH, Edwards D, Robinson E, Richardson JB: Birmingham hip arthroplasty: five to eight years of prospective multicenter results. J Arthroplasty. 2009, 24 (7): 1044-1050. 10.1016/j.arth.2008.07.016.CrossRefPubMed
10.
go back to reference Vail TP, Glisson RR, Dominguez DE, Kitaoka K, Ottaviano D: Position of hip resurfacing component affects strain and resistance to fracture in the femoral neck. J Bone Joint Surg Am. 2008, 90 (9): 1951-1960. 10.2106/JBJS.F.00788.CrossRefPubMed Vail TP, Glisson RR, Dominguez DE, Kitaoka K, Ottaviano D: Position of hip resurfacing component affects strain and resistance to fracture in the femoral neck. J Bone Joint Surg Am. 2008, 90 (9): 1951-1960. 10.2106/JBJS.F.00788.CrossRefPubMed
11.
go back to reference Richards CJ, Giannitsios D, Huk OL, Zukor DJ, Steffen T, Antoniou J: Risk of periprosthetic femoral neck fracture after hip resurfacing arthroplasty: valgus compared with anatomic alignment. A biomechanical and clinical analysis. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 96-101. 10.2106/JBJS.H.00444.CrossRefPubMed Richards CJ, Giannitsios D, Huk OL, Zukor DJ, Steffen T, Antoniou J: Risk of periprosthetic femoral neck fracture after hip resurfacing arthroplasty: valgus compared with anatomic alignment. A biomechanical and clinical analysis. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 96-101. 10.2106/JBJS.H.00444.CrossRefPubMed
12.
go back to reference Anglin C, Masri BA, Tonetti J, Hodgson AJ, Greidanus NV: Hip resurfacing femoral neck fracture influenced by valgus placement. Clin Orthop Relat Res. 2007, 465: 71-79.PubMed Anglin C, Masri BA, Tonetti J, Hodgson AJ, Greidanus NV: Hip resurfacing femoral neck fracture influenced by valgus placement. Clin Orthop Relat Res. 2007, 465: 71-79.PubMed
13.
go back to reference Davis ET, Olsen M, Zdero R, Waddell JP, Schemitsch EH: Femoral neck fracture following hip resurfacing: the effect of alignment of the femoral component. J Bone Joint Surg Br. 2008, 90 (11): 1522-1527. 10.1302/0301-620X.90B11.20068.CrossRefPubMed Davis ET, Olsen M, Zdero R, Waddell JP, Schemitsch EH: Femoral neck fracture following hip resurfacing: the effect of alignment of the femoral component. J Bone Joint Surg Br. 2008, 90 (11): 1522-1527. 10.1302/0301-620X.90B11.20068.CrossRefPubMed
14.
go back to reference Gelaude F, Vander Sloten J, Lauwers B: Accuracy assessment of CT-based outer surface femur meshes. Comput Aided Surg. 2008, 13 (4): 188-199.CrossRefPubMed Gelaude F, Vander Sloten J, Lauwers B: Accuracy assessment of CT-based outer surface femur meshes. Comput Aided Surg. 2008, 13 (4): 188-199.CrossRefPubMed
15.
go back to reference Kim PR, Beaule PE, Laflamme GY, Dunbar M: Causes of early failure in a multicenter clinical trial of hip resurfacing. J Arthroplasty. 2008, 23 (6 Suppl 1): 44-49. Kim PR, Beaule PE, Laflamme GY, Dunbar M: Causes of early failure in a multicenter clinical trial of hip resurfacing. J Arthroplasty. 2008, 23 (6 Suppl 1): 44-49.
16.
go back to reference Beaule PE, Lee JL, Le Duff MJ, Amstutz HC, Ebramzadeh E: Orientation of the femoral component in surface arthroplasty of the hip. A biomechanical and clinical analysis. J Bone Joint Surg Am. 2004, 86-A (9): 2015-2021.PubMed Beaule PE, Lee JL, Le Duff MJ, Amstutz HC, Ebramzadeh E: Orientation of the femoral component in surface arthroplasty of the hip. A biomechanical and clinical analysis. J Bone Joint Surg Am. 2004, 86-A (9): 2015-2021.PubMed
17.
go back to reference Beaule PE, Harvey N, Zaragoza E, Le Duff MJ, Dorey FJ: The femoral head/neck offset and hip resurfacing. J Bone Joint Surg Br. 2007, 89 (1): 9-15. 10.1302/0301-620X.89B1.18011.CrossRefPubMed Beaule PE, Harvey N, Zaragoza E, Le Duff MJ, Dorey FJ: The femoral head/neck offset and hip resurfacing. J Bone Joint Surg Br. 2007, 89 (1): 9-15. 10.1302/0301-620X.89B1.18011.CrossRefPubMed
18.
go back to reference Eingartner C: Current trends in total hip arthroplasty. Ortop Traumatol Rehabil. 2007, 9 (1): 8-14.PubMed Eingartner C: Current trends in total hip arthroplasty. Ortop Traumatol Rehabil. 2007, 9 (1): 8-14.PubMed
19.
go back to reference Witjes S, Smolders JM, Beaule PE, Pasker P, Van Susante JL: Learning from the learning curve in total hip resurfacing: a radiographic analysis. Arch Orthop Trauma Surg. 2009, 129 (10): 1293-1299. 10.1007/s00402-009-0875-z.CrossRefPubMed Witjes S, Smolders JM, Beaule PE, Pasker P, Van Susante JL: Learning from the learning curve in total hip resurfacing: a radiographic analysis. Arch Orthop Trauma Surg. 2009, 129 (10): 1293-1299. 10.1007/s00402-009-0875-z.CrossRefPubMed
20.
go back to reference Cobb JP, Kannan V, Dandachli W, Iranpour F, Brust KU, Hart AJ: Learning how to resurface cam-type femoral heads with acceptable accuracy and precision: the role of computed tomography-based navigation. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 57-64. 10.2106/JBJS.H.00606.CrossRefPubMed Cobb JP, Kannan V, Dandachli W, Iranpour F, Brust KU, Hart AJ: Learning how to resurface cam-type femoral heads with acceptable accuracy and precision: the role of computed tomography-based navigation. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 57-64. 10.2106/JBJS.H.00606.CrossRefPubMed
21.
go back to reference Hodgson A, Helmy N, Masri BA, Greidanus NV, Inkpen KB, Duncan CP, Garbuz DS, Anglin C: Comparative repeatability of guide-pin axis positioning in computer-assisted and manual femoral head resurfacing arthroplasty. Proc Inst Mech Eng H. 2007, 221 (7): 713-724. 10.1243/09544119JEIM284.CrossRefPubMed Hodgson A, Helmy N, Masri BA, Greidanus NV, Inkpen KB, Duncan CP, Garbuz DS, Anglin C: Comparative repeatability of guide-pin axis positioning in computer-assisted and manual femoral head resurfacing arthroplasty. Proc Inst Mech Eng H. 2007, 221 (7): 713-724. 10.1243/09544119JEIM284.CrossRefPubMed
22.
go back to reference Seyler TM, Lai LP, Sprinkle DI, Ward WG, Jinnah RH: Does computer-assisted surgery improve accuracy and decrease the learning curve in hip resurfacing? A radiographic analysis. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 71-80. 10.2106/JBJS.H.00697.CrossRefPubMed Seyler TM, Lai LP, Sprinkle DI, Ward WG, Jinnah RH: Does computer-assisted surgery improve accuracy and decrease the learning curve in hip resurfacing? A radiographic analysis. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 71-80. 10.2106/JBJS.H.00697.CrossRefPubMed
23.
go back to reference Resubal JR, Morgan DA: Computer-assisted vs conventional mechanical jig technique in hip resurfacing arthroplasty. J Arthroplasty. 2009, 24 (3): 341-350. 10.1016/j.arth.2007.12.013.CrossRefPubMed Resubal JR, Morgan DA: Computer-assisted vs conventional mechanical jig technique in hip resurfacing arthroplasty. J Arthroplasty. 2009, 24 (3): 341-350. 10.1016/j.arth.2007.12.013.CrossRefPubMed
24.
go back to reference Pitto RP, Malak S, Anderson IA: Accuracy of computer-assisted navigation for femoral head resurfacing decreases in hips with abnormal anatomy. Clin Orthop Relat Res. 2009, 467 (9): 2310-2317. 10.1007/s11999-009-0850-6.CrossRefPubMedPubMedCentral Pitto RP, Malak S, Anderson IA: Accuracy of computer-assisted navigation for femoral head resurfacing decreases in hips with abnormal anatomy. Clin Orthop Relat Res. 2009, 467 (9): 2310-2317. 10.1007/s11999-009-0850-6.CrossRefPubMedPubMedCentral
25.
go back to reference Suetens P, Bellon E, Vandermeulen D, Smet M, Marchal G, Nuyts J, Mortelmans L: Image segmentation: methods and applications in diagnostic radiology and nuclear medicine. Eur J Radiol. 1993, 17 (1): 14-21. 10.1016/0720-048X(93)90023-G.CrossRefPubMed Suetens P, Bellon E, Vandermeulen D, Smet M, Marchal G, Nuyts J, Mortelmans L: Image segmentation: methods and applications in diagnostic radiology and nuclear medicine. Eur J Radiol. 1993, 17 (1): 14-21. 10.1016/0720-048X(93)90023-G.CrossRefPubMed
26.
go back to reference Fitz W: Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs. J Bone Joint Surg Am. 2009, 91 (Suppl 1): 69-76. 10.2106/JBJS.H.01448.CrossRefPubMed Fitz W: Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs. J Bone Joint Surg Am. 2009, 91 (Suppl 1): 69-76. 10.2106/JBJS.H.01448.CrossRefPubMed
27.
go back to reference Jacobs MA, Goytia RN, Bhargava T: Hip resurfacing through an anterolateral approach. Surgical description and early review. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 38-44. 10.2106/JBJS.H.00684.CrossRefPubMed Jacobs MA, Goytia RN, Bhargava T: Hip resurfacing through an anterolateral approach. Surgical description and early review. J Bone Joint Surg Am. 2008, 90 (Suppl 3): 38-44. 10.2106/JBJS.H.00684.CrossRefPubMed
28.
go back to reference Nork SE, Schar M, Pfander G, Beck M, Djonov V, Ganz R, Leunig M: Anatomic considerations for the choice of surgical approach for hip resurfacing arthroplasty. Orthop Clin North Am. 2005, 36 (2): 163-170. 10.1016/j.ocl.2005.01.003. viiiCrossRefPubMed Nork SE, Schar M, Pfander G, Beck M, Djonov V, Ganz R, Leunig M: Anatomic considerations for the choice of surgical approach for hip resurfacing arthroplasty. Orthop Clin North Am. 2005, 36 (2): 163-170. 10.1016/j.ocl.2005.01.003. viiiCrossRefPubMed
Metadata
Title
A custom-made guide-wire positioning device for Hip Surface Replacement Arthroplasty: description and first results
Authors
Martijn Raaijmaakers
Frederik Gelaude
Karla De Smedt
Tim Clijmans
Jeroen Dille
Michiel Mulier
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2010
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-11-161

Other articles of this Issue 1/2010

BMC Musculoskeletal Disorders 1/2010 Go to the issue