Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2010

Open Access 01-12-2010 | Research article

Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption - implications for osteoclast quality

Authors: Anita V Neutzsky-Wulff, Mette G Sørensen, Dino Kocijancic, Diana J Leeming, Morten H Dziegiel, Morten A Karsdal, Kim Henriksen

Published in: BMC Musculoskeletal Disorders | Issue 1/2010

Login to get access

Abstract

Background

Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function.

Methods

Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits.

Results

All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity.

Conclusions

We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Seeman E, Delmas PD: Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006, 354: 2250-2261. 10.1056/NEJMra053077.CrossRefPubMed Seeman E, Delmas PD: Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006, 354: 2250-2261. 10.1056/NEJMra053077.CrossRefPubMed
2.
go back to reference Chavassieux P, Seeman E, Delmas PD: Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev. 2007, 28: 151-164. 10.1210/er.2006-0029.CrossRefPubMed Chavassieux P, Seeman E, Delmas PD: Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev. 2007, 28: 151-164. 10.1210/er.2006-0029.CrossRefPubMed
3.
go back to reference Martin TJ, Sims NA: Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005, 11: 76-81. 10.1016/j.molmed.2004.12.004.CrossRefPubMed Martin TJ, Sims NA: Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005, 11: 76-81. 10.1016/j.molmed.2004.12.004.CrossRefPubMed
4.
go back to reference Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K: Are nonresorbing osteoclasts sources of bone anabolic activity?. J Bone Miner Res. 2007, 22: 487-494. 10.1359/jbmr.070109.CrossRefPubMed Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K: Are nonresorbing osteoclasts sources of bone anabolic activity?. J Bone Miner Res. 2007, 22: 487-494. 10.1359/jbmr.070109.CrossRefPubMed
5.
go back to reference Karsdal MA, Henriksen K: Osteoclasts Control Osteoblast Activity. BoneKey-Osteovision. 2007, 4: 19-24.CrossRef Karsdal MA, Henriksen K: Osteoclasts Control Osteoblast Activity. BoneKey-Osteovision. 2007, 4: 19-24.CrossRef
6.
go back to reference Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, et al.: Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol. 2005, 166: 467-476.CrossRefPubMedPubMedCentral Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, et al.: Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol. 2005, 166: 467-476.CrossRefPubMedPubMedCentral
7.
go back to reference Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K: Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun. 2008, 366: 483-488. 10.1016/j.bbrc.2007.11.168.CrossRefPubMed Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K: Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun. 2008, 366: 483-488. 10.1016/j.bbrc.2007.11.168.CrossRefPubMed
8.
go back to reference Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA. 2008, 105: 20764-20769. 10.1073/pnas.0805133106.CrossRefPubMedPubMedCentral Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA. 2008, 105: 20764-20769. 10.1073/pnas.0805133106.CrossRefPubMedPubMedCentral
9.
go back to reference Roodman GD: Cell biology of the osteoclast. Exp Hematol. 1999, 27: 1229-1241. 10.1016/S0301-472X(99)00061-2.CrossRefPubMed Roodman GD: Cell biology of the osteoclast. Exp Hematol. 1999, 27: 1229-1241. 10.1016/S0301-472X(99)00061-2.CrossRefPubMed
10.
go back to reference Li YP, Chen W, Liang Y, Li E, Stashenko P: Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999, 23: 447-451. 10.1038/70563.CrossRefPubMed Li YP, Chen W, Liang Y, Li E, Stashenko P: Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999, 23: 447-451. 10.1038/70563.CrossRefPubMed
11.
go back to reference Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, et al.: Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol. 2003, 162: 57-68.CrossRefPubMedPubMedCentral Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, et al.: Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol. 2003, 162: 57-68.CrossRefPubMedPubMedCentral
12.
go back to reference Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al.: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001, 104: 205-215. 10.1016/S0092-8674(01)00206-9.CrossRefPubMed Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al.: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001, 104: 205-215. 10.1016/S0092-8674(01)00206-9.CrossRefPubMed
13.
go back to reference Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, et al.: Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol. 2004, 164: 1537-1545.CrossRefPubMedPubMedCentral Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, et al.: Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol. 2004, 164: 1537-1545.CrossRefPubMedPubMedCentral
14.
go back to reference Graves AR, Curran PK, Smith CL, Mindell JA: The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature. 2008, 453: 788-792. 10.1038/nature06907.CrossRefPubMed Graves AR, Curran PK, Smith CL, Mindell JA: The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature. 2008, 453: 788-792. 10.1038/nature06907.CrossRefPubMed
15.
go back to reference Neutzsky-Wulff AV, Karsdal MA, Henriksen K: Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int. 2008, 83: 425-437. 10.1007/s00223-008-9185-7.CrossRefPubMed Neutzsky-Wulff AV, Karsdal MA, Henriksen K: Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int. 2008, 83: 425-437. 10.1007/s00223-008-9185-7.CrossRefPubMed
16.
go back to reference Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al.: Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000, 9: 2059-2063. 10.1093/hmg/9.13.2059.CrossRefPubMed Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al.: Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000, 9: 2059-2063. 10.1093/hmg/9.13.2059.CrossRefPubMed
17.
go back to reference Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al.: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000, 25: 343-346. 10.1038/77131.CrossRefPubMed Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al.: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000, 25: 343-346. 10.1038/77131.CrossRefPubMed
18.
go back to reference Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, et al.: Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003, 18: 1740-1747. 10.1359/jbmr.2003.18.10.1740.CrossRefPubMed Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, et al.: Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003, 18: 1740-1747. 10.1359/jbmr.2003.18.10.1740.CrossRefPubMed
19.
go back to reference Heaney C, Shalev H, Elbedour K, Carmi R, Staack JB, Sheffield VC, et al.: Human autosomal recessive osteopetrosis maps to 11q13, a position predicted by comparative mapping of the murine osteosclerosis (oc) mutation. Hum Mol Genet. 1998, 7: 1407-1410. 10.1093/hmg/7.9.1407.CrossRefPubMed Heaney C, Shalev H, Elbedour K, Carmi R, Staack JB, Sheffield VC, et al.: Human autosomal recessive osteopetrosis maps to 11q13, a position predicted by comparative mapping of the murine osteosclerosis (oc) mutation. Hum Mol Genet. 1998, 7: 1407-1410. 10.1093/hmg/7.9.1407.CrossRefPubMed
20.
go back to reference Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, et al.: Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet. 2009, 124: 561-577. 10.1007/s00439-008-0583-8.CrossRefPubMed Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, et al.: Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet. 2009, 124: 561-577. 10.1007/s00439-008-0583-8.CrossRefPubMed
21.
go back to reference Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE: Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA. 1983, 80: 2752-2756. 10.1073/pnas.80.9.2752.CrossRefPubMedPubMedCentral Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE: Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA. 1983, 80: 2752-2756. 10.1073/pnas.80.9.2752.CrossRefPubMedPubMedCentral
22.
go back to reference Whyte MP: Carbonic anhydrase II deficiency. Clin Orthop. 1993, 52-63. Whyte MP: Carbonic anhydrase II deficiency. Clin Orthop. 1993, 52-63.
23.
go back to reference Ohba Y, Ohba T, Sumitani K, Tagami-Kondoh K, Hiura K, Miki Y, et al.: Inhibitory mechanisms of H(+)-ATPase inhibitor bafilomycin A1 and carbonic anhydrase II inhibitor acetazolamide on experimental bone resorption. FEBS Lett. 1996, 387: 175-178. 10.1016/0014-5793(96)00482-6.CrossRefPubMed Ohba Y, Ohba T, Sumitani K, Tagami-Kondoh K, Hiura K, Miki Y, et al.: Inhibitory mechanisms of H(+)-ATPase inhibitor bafilomycin A1 and carbonic anhydrase II inhibitor acetazolamide on experimental bone resorption. FEBS Lett. 1996, 387: 175-178. 10.1016/0014-5793(96)00482-6.CrossRefPubMed
24.
go back to reference Rousselle AV, Heymann D: Osteoclastic acidification pathways during bone resorption. Bone. 2002, 30: 533-540. 10.1016/S8756-3282(02)00672-5.CrossRefPubMed Rousselle AV, Heymann D: Osteoclastic acidification pathways during bone resorption. Bone. 2002, 30: 533-540. 10.1016/S8756-3282(02)00672-5.CrossRefPubMed
25.
go back to reference Josephsen K, Praetorius J, Frische S, Gawenis LR, Kwon TH, Agre P, et al.: Targeted disruption of the Cl-/. Proc Natl Acad Sci USA. 2009, 106: 1638-1641. 10.1073/pnas.0811682106.CrossRefPubMedPubMedCentral Josephsen K, Praetorius J, Frische S, Gawenis LR, Kwon TH, Agre P, et al.: Targeted disruption of the Cl-/. Proc Natl Acad Sci USA. 2009, 106: 1638-1641. 10.1073/pnas.0811682106.CrossRefPubMedPubMedCentral
26.
go back to reference Jansen ID, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, et al.: Ae2(a, b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J. 2009, 23: 3470-3481. 10.1096/fj.08-122598.CrossRefPubMed Jansen ID, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, et al.: Ae2(a, b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J. 2009, 23: 3470-3481. 10.1096/fj.08-122598.CrossRefPubMed
27.
go back to reference Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996, 273: 1236-1238. 10.1126/science.273.5279.1236.CrossRefPubMed Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996, 273: 1236-1238. 10.1126/science.273.5279.1236.CrossRefPubMed
28.
go back to reference Nishi Y, Atley L, Eyre DE, Edelson JG, Superti-Furga A, Yasuda T, et al.: Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. J Bone Miner Res. 1999, 14: 1902-1908. 10.1359/jbmr.1999.14.11.1902.CrossRefPubMed Nishi Y, Atley L, Eyre DE, Edelson JG, Superti-Furga A, Yasuda T, et al.: Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. J Bone Miner Res. 1999, 14: 1902-1908. 10.1359/jbmr.1999.14.11.1902.CrossRefPubMed
29.
go back to reference Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, et al.: Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999, 14: 1654-1663. 10.1359/jbmr.1999.14.10.1654.CrossRefPubMed Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, et al.: Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999, 14: 1654-1663. 10.1359/jbmr.1999.14.10.1654.CrossRefPubMed
30.
go back to reference Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al.: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998, 95: 13453-13458. 10.1073/pnas.95.23.13453.CrossRefPubMedPubMedCentral Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al.: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998, 95: 13453-13458. 10.1073/pnas.95.23.13453.CrossRefPubMedPubMedCentral
31.
go back to reference Garnero P, Ferreras M, Karsdal MA, NicAmhlaoibh R, Risteli J, Borel O, et al.: The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003, 18: 859-867. 10.1359/jbmr.2003.18.5.859.CrossRefPubMed Garnero P, Ferreras M, Karsdal MA, NicAmhlaoibh R, Risteli J, Borel O, et al.: The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003, 18: 859-867. 10.1359/jbmr.2003.18.5.859.CrossRefPubMed
32.
go back to reference Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L: Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech. 2003, 61: 504-513. 10.1002/jemt.10374.CrossRefPubMed Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L: Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech. 2003, 61: 504-513. 10.1002/jemt.10374.CrossRefPubMed
33.
go back to reference Henriksen K, Sorensen MG, Nielsen Rh, Gram J, Schaller S, Dziegiel MH, et al.: Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J Bone Miner Res. 2006, 21: 58-66. 10.1359/JBMR.050905.CrossRefPubMed Henriksen K, Sorensen MG, Nielsen Rh, Gram J, Schaller S, Dziegiel MH, et al.: Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J Bone Miner Res. 2006, 21: 58-66. 10.1359/JBMR.050905.CrossRefPubMed
34.
go back to reference Everts V, Delaisse JM, Korper W, Niehof A, Vaes G, Beertsen W: Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol. 1992, 150: 221-231. 10.1002/jcp.1041500202.CrossRefPubMed Everts V, Delaisse JM, Korper W, Niehof A, Vaes G, Beertsen W: Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol. 1992, 150: 221-231. 10.1002/jcp.1041500202.CrossRefPubMed
35.
go back to reference Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, et al.: Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res. 2006, 21: 1399-1408. 10.1359/jbmr.060614.CrossRefPubMed Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, et al.: Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res. 2006, 21: 1399-1408. 10.1359/jbmr.060614.CrossRefPubMed
36.
go back to reference Shorey S, Heersche JN, Manolson MF: The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone. 2004, 35: 909-917. 10.1016/j.bone.2004.06.002.CrossRefPubMed Shorey S, Heersche JN, Manolson MF: The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone. 2004, 35: 909-917. 10.1016/j.bone.2004.06.002.CrossRefPubMed
37.
go back to reference Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, et al.: Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J. 1999, 13 (10): 1219-1230.PubMed Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, et al.: Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J. 1999, 13 (10): 1219-1230.PubMed
38.
go back to reference Everts V, de Vries TJ, Helfrich MH: Osteoclast heterogeneity: Lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta. 2009, 1792: 757-765.CrossRefPubMed Everts V, de Vries TJ, Helfrich MH: Osteoclast heterogeneity: Lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta. 2009, 1792: 757-765.CrossRefPubMed
39.
go back to reference Bowman EJ, Siebers A, Altendorf K: Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA. 1988, 85: 7972-7976. 10.1073/pnas.85.21.7972.CrossRefPubMedPubMedCentral Bowman EJ, Siebers A, Altendorf K: Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA. 1988, 85: 7972-7976. 10.1073/pnas.85.21.7972.CrossRefPubMedPubMedCentral
40.
go back to reference Sorensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA: Diphyllin, a Novel and Naturally Potent V-ATPase Inhibitor, Abrogates Acidification of the Osteoclastic Resorption Lacunae and Bone Resorption. J Bone Miner Res. 2007, 22: 1640-1648. 10.1359/jbmr.070613.CrossRefPubMed Sorensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA: Diphyllin, a Novel and Naturally Potent V-ATPase Inhibitor, Abrogates Acidification of the Osteoclastic Resorption Lacunae and Bone Resorption. J Bone Miner Res. 2007, 22: 1640-1648. 10.1359/jbmr.070613.CrossRefPubMed
41.
go back to reference Hall TJ, Higgins W, Tardif C, Chambers TJ: A comparison of the effects of inhibitors of carbonic anhydrase on osteoclastic bone resorption and purified carbonic anhydrase isozyme II. Calcif Tissue Int. 1991, 49: 328-332. 10.1007/BF02556255.CrossRefPubMed Hall TJ, Higgins W, Tardif C, Chambers TJ: A comparison of the effects of inhibitors of carbonic anhydrase on osteoclastic bone resorption and purified carbonic anhydrase isozyme II. Calcif Tissue Int. 1991, 49: 328-332. 10.1007/BF02556255.CrossRefPubMed
42.
go back to reference Delaisse JM, Boyde A, Maconnachie E, Ali NN, Sear CH, Eeckhout Y, et al.: The effects of inhibitors of cysteine-proteinases and collagenase on the resorptive activity of isolated osteoclasts. Bone. 1987, 8: 305-313. 10.1016/8756-3282(87)90007-X.CrossRefPubMed Delaisse JM, Boyde A, Maconnachie E, Ali NN, Sear CH, Eeckhout Y, et al.: The effects of inhibitors of cysteine-proteinases and collagenase on the resorptive activity of isolated osteoclasts. Bone. 1987, 8: 305-313. 10.1016/8756-3282(87)90007-X.CrossRefPubMed
43.
go back to reference Muhlbauer RC, Bauss F, Schenk R, Janner M, Bosies E, Strein K, et al.: BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res. 1991, 6 (9): 1003-1011. 10.1002/jbmr.5650060915.CrossRefPubMed Muhlbauer RC, Bauss F, Schenk R, Janner M, Bosies E, Strein K, et al.: BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res. 1991, 6 (9): 1003-1011. 10.1002/jbmr.5650060915.CrossRefPubMed
44.
go back to reference Sorensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, et al.: Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab. 2007, 25: 36-45. 10.1007/s00774-006-0725-9.CrossRefPubMed Sorensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, et al.: Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab. 2007, 25: 36-45. 10.1007/s00774-006-0725-9.CrossRefPubMed
45.
go back to reference Fuller K, Kirstein B, Chambers TJ: Regulation and enzymatic basis of bone resorption by human osteoclasts. Clin Sci (Lond). 2007, 112: 567-575. 10.1042/CS20060274.CrossRef Fuller K, Kirstein B, Chambers TJ: Regulation and enzymatic basis of bone resorption by human osteoclasts. Clin Sci (Lond). 2007, 112: 567-575. 10.1042/CS20060274.CrossRef
46.
go back to reference van bE, Pieterman E, Cohen L, Lowik C, Papapoulos S: Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun. 1999, 255: 491-494. 10.1006/bbrc.1999.0224.CrossRef van bE, Pieterman E, Cohen L, Lowik C, Papapoulos S: Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun. 1999, 255: 491-494. 10.1006/bbrc.1999.0224.CrossRef
47.
go back to reference Rissanen JP, Suominen MI, Peng Z, Halleen JM: Secreted tartrate-resistant acid phosphatase 5b is a Marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 2008, 82: 108-115. 10.1007/s00223-007-9091-4.CrossRefPubMed Rissanen JP, Suominen MI, Peng Z, Halleen JM: Secreted tartrate-resistant acid phosphatase 5b is a Marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 2008, 82: 108-115. 10.1007/s00223-007-9091-4.CrossRefPubMed
48.
go back to reference Rissanen JP, Ylipahkala H, Fagerlund KM, long C, Vaananen HK, Halleen JM: Improved methods for testing antiresorptive compounds in human osteoclast cultures. J Bone Miner Metab. 2009, 27: 105-109. 10.1007/s00774-008-0002-1.CrossRefPubMed Rissanen JP, Ylipahkala H, Fagerlund KM, long C, Vaananen HK, Halleen JM: Improved methods for testing antiresorptive compounds in human osteoclast cultures. J Bone Miner Metab. 2009, 27: 105-109. 10.1007/s00774-008-0002-1.CrossRefPubMed
49.
go back to reference Sondergaard BC, Henriksen K, Wulf H, Oestergaard S, Schurigt U, Brauer R, et al.: Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartilage. 2006, 14: 738-748. 10.1016/j.joca.2006.01.016.CrossRefPubMed Sondergaard BC, Henriksen K, Wulf H, Oestergaard S, Schurigt U, Brauer R, et al.: Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartilage. 2006, 14: 738-748. 10.1016/j.joca.2006.01.016.CrossRefPubMed
50.
go back to reference Sundquist K, Lakkakorpi P, Wallmark B, Vaananen K: Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun. 1990, 168: 309-313. 10.1016/0006-291X(90)91709-2.CrossRefPubMed Sundquist K, Lakkakorpi P, Wallmark B, Vaananen K: Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun. 1990, 168: 309-313. 10.1016/0006-291X(90)91709-2.CrossRefPubMed
51.
go back to reference Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Helix N, Stahlhut M, et al.: The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004, 19: 1144-1153. 10.1359/JBMR.040302.CrossRefPubMed Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Helix N, Stahlhut M, et al.: The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004, 19: 1144-1153. 10.1359/JBMR.040302.CrossRefPubMed
52.
go back to reference Parikka V, Lehenkari P, Sassi ML, Halleen J, Risteli J, Harkonen P, et al.: Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology. 2001, 142: 5371-5378. 10.1210/en.142.12.5371.CrossRefPubMed Parikka V, Lehenkari P, Sassi ML, Halleen J, Risteli J, Harkonen P, et al.: Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology. 2001, 142: 5371-5378. 10.1210/en.142.12.5371.CrossRefPubMed
53.
go back to reference Delaisse JM, Vaes G: Mechanism of mineral solubilization, and matrix degradation in osteoclastic bone resorption. Biology and Physiology of the Osteoclast. Edited by: Rifkin BR, Gay CV. 1992, CRC, Press, Boca Raton, FL, USA, 289-314. Delaisse JM, Vaes G: Mechanism of mineral solubilization, and matrix degradation in osteoclastic bone resorption. Biology and Physiology of the Osteoclast. Edited by: Rifkin BR, Gay CV. 1992, CRC, Press, Boca Raton, FL, USA, 289-314.
54.
go back to reference Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, et al.: Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone. 2000, 26: 367-373. 10.1016/S8756-3282(00)00235-0.CrossRefPubMed Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, et al.: Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone. 2000, 26: 367-373. 10.1016/S8756-3282(00)00235-0.CrossRefPubMed
55.
go back to reference Sorensen MG, Henriksen K, Schaller S, Karsdal MA: Biochemical markers in preclinical models of osteoporosis. Biomarkers. 2007, 12: 266-286. 10.1080/13547500601070842.CrossRefPubMed Sorensen MG, Henriksen K, Schaller S, Karsdal MA: Biochemical markers in preclinical models of osteoporosis. Biomarkers. 2007, 12: 266-286. 10.1080/13547500601070842.CrossRefPubMed
56.
go back to reference VanSaun MN, Matrisian LM: Matrix metalloproteinases and cellular motility in development and disease. Birth Defects Res C Embryo Today. 2006, 78: 69-79. 10.1002/bdrc.20061.CrossRefPubMed VanSaun MN, Matrisian LM: Matrix metalloproteinases and cellular motility in development and disease. Birth Defects Res C Embryo Today. 2006, 78: 69-79. 10.1002/bdrc.20061.CrossRefPubMed
57.
go back to reference Adami S, Supronik J, Hala T, Brown JP, Garnero P, Haemmerle S: Effect of one year treatment with the cathepsin-K inhibitor, balicatib, on bone mineral density (BMD) in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Res. 2006, 21 (suppl 1): Adami S, Supronik J, Hala T, Brown JP, Garnero P, Haemmerle S: Effect of one year treatment with the cathepsin-K inhibitor, balicatib, on bone mineral density (BMD) in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Res. 2006, 21 (suppl 1):
58.
go back to reference Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, et al.: Odanacatib, a cathepsin-K inhibitor for osteoporosis: A two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010, 25: 937-947.PubMed Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, et al.: Odanacatib, a cathepsin-K inhibitor for osteoporosis: A two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010, 25: 937-947.PubMed
59.
go back to reference Ainola M, Valleala H, Nykanen P, Risteli J, Hanemaaijer R, Konttinen YT: Erosive arthritis in a patient with pycnodysostosis: an experiment of nature. Arthritis Rheum. 2008, 58 (11): 3394-3401. 10.1002/art.23996.CrossRefPubMed Ainola M, Valleala H, Nykanen P, Risteli J, Hanemaaijer R, Konttinen YT: Erosive arthritis in a patient with pycnodysostosis: an experiment of nature. Arthritis Rheum. 2008, 58 (11): 3394-3401. 10.1002/art.23996.CrossRefPubMed
60.
go back to reference Carano A, Teitelbaum SL, Konsek JD, Schlesinger PH, Blair HC: Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest. 1990, 85 (2): 456-461. 10.1172/JCI114459.CrossRefPubMedPubMedCentral Carano A, Teitelbaum SL, Konsek JD, Schlesinger PH, Blair HC: Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest. 1990, 85 (2): 456-461. 10.1172/JCI114459.CrossRefPubMedPubMedCentral
61.
go back to reference Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, et al.: Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991, 88 (6): 2095-2105. 10.1172/JCI115539.CrossRefPubMedPubMedCentral Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, et al.: Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991, 88 (6): 2095-2105. 10.1172/JCI115539.CrossRefPubMedPubMedCentral
62.
go back to reference Coxon FP, Thompson K, Roelofs AJ, Ebetino FH, Rogers MJ: Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone. 2008, 42 (5): 848-860. 10.1016/j.bone.2007.12.225.CrossRefPubMed Coxon FP, Thompson K, Roelofs AJ, Ebetino FH, Rogers MJ: Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone. 2008, 42 (5): 848-860. 10.1016/j.bone.2007.12.225.CrossRefPubMed
63.
go back to reference Reszka AA, Rodan GA: Mechanism of action of bisphosphonates. Curr Osteoporos Rep. 2003, 1: 45-52. 10.1007/s11914-003-0008-5.CrossRefPubMed Reszka AA, Rodan GA: Mechanism of action of bisphosphonates. Curr Osteoporos Rep. 2003, 1: 45-52. 10.1007/s11914-003-0008-5.CrossRefPubMed
64.
go back to reference Halasy-Nagy JM, Rodan GA, Reszka AA: Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone. 2001, 29 (6): 553-559. 10.1016/S8756-3282(01)00615-9.CrossRefPubMed Halasy-Nagy JM, Rodan GA, Reszka AA: Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone. 2001, 29 (6): 553-559. 10.1016/S8756-3282(01)00615-9.CrossRefPubMed
65.
go back to reference Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, et al.: Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem. 2003, 278: 44975-44987. 10.1074/jbc.M303905200.CrossRefPubMed Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, et al.: Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem. 2003, 278: 44975-44987. 10.1074/jbc.M303905200.CrossRefPubMed
66.
go back to reference Kwak HB, Kim JY, Kim KJ, Choi MK, Kim JJ, Kim KM, et al.: Risedronate directly inhibits osteoclast differentiation and inflammatory bone loss. Biol Pharm Bull. 2009, 32: 1193-1198. 10.1248/bpb.32.1193.CrossRefPubMed Kwak HB, Kim JY, Kim KJ, Choi MK, Kim JJ, Kim KM, et al.: Risedronate directly inhibits osteoclast differentiation and inflammatory bone loss. Biol Pharm Bull. 2009, 32: 1193-1198. 10.1248/bpb.32.1193.CrossRefPubMed
67.
go back to reference Coxon FP, Taylor A: Vesicular trafficking in osteoclasts. Semin Cell Dev Biol. 2008, 19: 424-433. 10.1016/j.semcdb.2008.08.004.CrossRefPubMed Coxon FP, Taylor A: Vesicular trafficking in osteoclasts. Semin Cell Dev Biol. 2008, 19: 424-433. 10.1016/j.semcdb.2008.08.004.CrossRefPubMed
68.
go back to reference Vaaraniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G: Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004, 19: 1432-1440. 10.1359/JBMR.040603.CrossRefPubMed Vaaraniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G: Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004, 19: 1432-1440. 10.1359/JBMR.040603.CrossRefPubMed
69.
go back to reference Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA: Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int. 2007, 18: 681-685. 10.1007/s00198-006-0286-8.CrossRefPubMed Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA: Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int. 2007, 18: 681-685. 10.1007/s00198-006-0286-8.CrossRefPubMed
Metadata
Title
Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption - implications for osteoclast quality
Authors
Anita V Neutzsky-Wulff
Mette G Sørensen
Dino Kocijancic
Diana J Leeming
Morten H Dziegiel
Morten A Karsdal
Kim Henriksen
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2010
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-11-109

Other articles of this Issue 1/2010

BMC Musculoskeletal Disorders 1/2010 Go to the issue