Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2009

Open Access 01-12-2009 | Research article

Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

Authors: Seonhong Hwang, Youngeun Kim, Youngho Kim

Published in: BMC Musculoskeletal Disorders | Issue 1/2009

Login to get access

Abstract

Background

In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis.

Methods

Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis.

Results

There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting.

Conclusion

In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).
Appendix
Available only for authorised users
Literature
1.
go back to reference Campbell C, Muncer SJ: The cause of low back pain: a network analysis. Social Science and Medicine. 2005, 60: 409-419. 10.1016/j.socscimed.2004.05.013.CrossRefPubMed Campbell C, Muncer SJ: The cause of low back pain: a network analysis. Social Science and Medicine. 2005, 60: 409-419. 10.1016/j.socscimed.2004.05.013.CrossRefPubMed
2.
go back to reference Stuart McGill: Low back disorders: Evidence-based prevention and rehabilitation. Human Kinetics. 2002 Stuart McGill: Low back disorders: Evidence-based prevention and rehabilitation. Human Kinetics. 2002
3.
go back to reference Koopman FS, Edelaar M, Slikker R, Reynders K, Woude van der LHV, Marco HJM: Effectiveness of a Multidisciplinary Occupational Training Program for Chronic Low Back Pain: A Prospective Cohort Study. Am J Phys Med Rehabil. 2004, 83: 94-103. 10.1097/01.PHM.0000107482.35803.11.CrossRefPubMed Koopman FS, Edelaar M, Slikker R, Reynders K, Woude van der LHV, Marco HJM: Effectiveness of a Multidisciplinary Occupational Training Program for Chronic Low Back Pain: A Prospective Cohort Study. Am J Phys Med Rehabil. 2004, 83: 94-103. 10.1097/01.PHM.0000107482.35803.11.CrossRefPubMed
4.
go back to reference Chen YL: Changes in Lifting Dynamics after Localized Arm Fatigue. Int J Ind Ergon. 2000, 25: 611-619. 10.1016/S0169-8141(99)00048-7.CrossRef Chen YL: Changes in Lifting Dynamics after Localized Arm Fatigue. Int J Ind Ergon. 2000, 25: 611-619. 10.1016/S0169-8141(99)00048-7.CrossRef
5.
go back to reference Burgess-Limerick R, Shemmell J, Barry BK, Carson RG, Abernethy B: Spontaneous Transitions in the Coordination of a Whole Body Task. Hum Mov Sci. 2001, 20: 549-562. 10.1016/S0167-9457(01)00067-7.CrossRefPubMed Burgess-Limerick R, Shemmell J, Barry BK, Carson RG, Abernethy B: Spontaneous Transitions in the Coordination of a Whole Body Task. Hum Mov Sci. 2001, 20: 549-562. 10.1016/S0167-9457(01)00067-7.CrossRefPubMed
6.
go back to reference Hsiang SM, Brogmus GE, Courtney TK: Low Back Pain (LBP) and Lifting Technique – A Review. Int J Ind Ergon. 1997, 19: 59-74. 10.1016/0169-8141(95)00086-0.CrossRef Hsiang SM, Brogmus GE, Courtney TK: Low Back Pain (LBP) and Lifting Technique – A Review. Int J Ind Ergon. 1997, 19: 59-74. 10.1016/0169-8141(95)00086-0.CrossRef
7.
go back to reference Garg A, Moore JS: Prevention Strategies and the Low Back in Industry. Occupational Medicine. 1992, 7: 629-640.PubMed Garg A, Moore JS: Prevention Strategies and the Low Back in Industry. Occupational Medicine. 1992, 7: 629-640.PubMed
8.
go back to reference Garg A, Moore JS: Prevention strategies and the low back in industry. Occupational Medicine. 1992, 7 (4): 629-40.PubMed Garg A, Moore JS: Prevention strategies and the low back in industry. Occupational Medicine. 1992, 7 (4): 629-40.PubMed
9.
go back to reference Garg A, Herrin GD: Stoop or squat, a biomechanical and metabolical evaluation. A I I E Transactions. 1979, 11: 293-302.CrossRef Garg A, Herrin GD: Stoop or squat, a biomechanical and metabolical evaluation. A I I E Transactions. 1979, 11: 293-302.CrossRef
10.
go back to reference Welbergen E, Kemper HCG, Knibbe JJ, Toussaint HM, Clijssen L: Efficiency and effectiveness of stoop and squat lifting at different techniques. Ergonomics. 1991, 34: 613-24. 10.1080/00140139108967340.CrossRefPubMed Welbergen E, Kemper HCG, Knibbe JJ, Toussaint HM, Clijssen L: Efficiency and effectiveness of stoop and squat lifting at different techniques. Ergonomics. 1991, 34: 613-24. 10.1080/00140139108967340.CrossRefPubMed
11.
go back to reference Duplessis DH, Greenway EH, Keene KL, Lee IE, Clayton RL, Metzler T: Effect of semi-rigid lumbosacral orthosis use on oxygen consumption during repetitive stoop and squat lifting. Ergonomics. 1998, 41 (6): 790-797. 10.1080/001401398186649.CrossRefPubMed Duplessis DH, Greenway EH, Keene KL, Lee IE, Clayton RL, Metzler T: Effect of semi-rigid lumbosacral orthosis use on oxygen consumption during repetitive stoop and squat lifting. Ergonomics. 1998, 41 (6): 790-797. 10.1080/001401398186649.CrossRefPubMed
12.
go back to reference van Dieen JH, Marco HJM, Toussaint HM: Stoop or squat: a Review of Biomechanical Studies on Lifting Technique. Clin Biomech. 1999, 14: 685-696. 10.1016/S0268-0033(99)00031-5.CrossRef van Dieen JH, Marco HJM, Toussaint HM: Stoop or squat: a Review of Biomechanical Studies on Lifting Technique. Clin Biomech. 1999, 14: 685-696. 10.1016/S0268-0033(99)00031-5.CrossRef
13.
go back to reference Jager M, Luttman A: Biomechanical Analysis and Assessment of Lumbar Stress during Load Lifting using a Dynamic 19-Segment Human Model. Ergonomics. 1989, 32: 93-112. 10.1080/00140138908966070.CrossRefPubMed Jager M, Luttman A: Biomechanical Analysis and Assessment of Lumbar Stress during Load Lifting using a Dynamic 19-Segment Human Model. Ergonomics. 1989, 32: 93-112. 10.1080/00140138908966070.CrossRefPubMed
14.
go back to reference Straker L: Evidence to Support using Squat, Semi-squat and Stoop Techniques to Lift Low-lying Objects. Int J Ind Ergon. 2003, 31: 149-160. 10.1016/S0169-8141(02)00191-9.CrossRef Straker L: Evidence to Support using Squat, Semi-squat and Stoop Techniques to Lift Low-lying Objects. Int J Ind Ergon. 2003, 31: 149-160. 10.1016/S0169-8141(02)00191-9.CrossRef
15.
go back to reference Burgess-Limerick R: Squat, Stoop, or Something in Between?. Int J Ind Ergon. 2003, 31: 143-148. 10.1016/S0169-8141(02)00190-7.CrossRef Burgess-Limerick R: Squat, Stoop, or Something in Between?. Int J Ind Ergon. 2003, 31: 143-148. 10.1016/S0169-8141(02)00190-7.CrossRef
16.
go back to reference Garg A, Herrin GD: Stoop or Squat, a Biomechanical and Metabolical Evaluation. AIIE Transactions. 1979, 11: 293-302.CrossRef Garg A, Herrin GD: Stoop or Squat, a Biomechanical and Metabolical Evaluation. AIIE Transactions. 1979, 11: 293-302.CrossRef
17.
go back to reference Welbergen E, Kemper HCG, Knibbe JJ, Toussaint HM, Clijssen L: Efficiency and Effectiveness of Stoop and Squat Lifting at Different Techniques. Ergonomics. 1991, 34: 613-624. 10.1080/00140139108967340.CrossRefPubMed Welbergen E, Kemper HCG, Knibbe JJ, Toussaint HM, Clijssen L: Efficiency and Effectiveness of Stoop and Squat Lifting at Different Techniques. Ergonomics. 1991, 34: 613-624. 10.1080/00140139108967340.CrossRefPubMed
18.
go back to reference Duplessis DH, Greenway EH, Keene KL, Lee IE, Clayton RL, Metzler T: Effect of Semi-rigid Lumbosacral Orthosis Use on Oxygen Consumption during Repetitive Stoop and Squat Lifting. Ergonomics. 1998, 41: 790-797. 10.1080/001401398186649.CrossRefPubMed Duplessis DH, Greenway EH, Keene KL, Lee IE, Clayton RL, Metzler T: Effect of Semi-rigid Lumbosacral Orthosis Use on Oxygen Consumption during Repetitive Stoop and Squat Lifting. Ergonomics. 1998, 41: 790-797. 10.1080/001401398186649.CrossRefPubMed
19.
go back to reference Winter DA: Overall Principle of Lower Limb Support during Stance Phase of Gait. J Biomech. 1980, 13: 923-927. 10.1016/0021-9290(80)90162-1.CrossRefPubMed Winter DA: Overall Principle of Lower Limb Support during Stance Phase of Gait. J Biomech. 1980, 13: 923-927. 10.1016/0021-9290(80)90162-1.CrossRefPubMed
20.
go back to reference Hof AL: On the Interpretation of the Support Moment. Gait & Posture. 2000, 12: 196-199. 10.1016/S0966-6362(00)00084-9.CrossRef Hof AL: On the Interpretation of the Support Moment. Gait & Posture. 2000, 12: 196-199. 10.1016/S0966-6362(00)00084-9.CrossRef
21.
go back to reference Winter David: Biomechanics and Motor Control of Human Movement. 2004, John Wiley & Sons, Inc, 86-96. 3 Winter David: Biomechanics and Motor Control of Human Movement. 2004, John Wiley & Sons, Inc, 86-96. 3
22.
go back to reference Mitnitski AB, Yahia LH, Newman NM, Gracovetsky SA, Feldman AG: Coordination Between the Lumbar Spine Lordosis and Trunk Angle during Weight Lifting. Clinical Biomechanics. 1998, 13: 121-127. 10.1016/S0268-0033(97)00044-2.CrossRefPubMed Mitnitski AB, Yahia LH, Newman NM, Gracovetsky SA, Feldman AG: Coordination Between the Lumbar Spine Lordosis and Trunk Angle during Weight Lifting. Clinical Biomechanics. 1998, 13: 121-127. 10.1016/S0268-0033(97)00044-2.CrossRefPubMed
23.
go back to reference McGill SM, Hughson RL, Parks K: Changes in lumbar lordosis modify the role of the extensor muscles. Clinical Biomechanics. 2000, 15: 777-780. 10.1016/S0268-0033(00)00037-1.CrossRefPubMed McGill SM, Hughson RL, Parks K: Changes in lumbar lordosis modify the role of the extensor muscles. Clinical Biomechanics. 2000, 15: 777-780. 10.1016/S0268-0033(00)00037-1.CrossRefPubMed
24.
go back to reference Gracovetsky G: Function of the Spine. J Biomed Eng. 1986, 8: 217-223. 10.1016/0141-5425(86)90087-7.CrossRefPubMed Gracovetsky G: Function of the Spine. J Biomed Eng. 1986, 8: 217-223. 10.1016/0141-5425(86)90087-7.CrossRefPubMed
25.
go back to reference Dolan P, Adams MA: Influence of Lumbar and Hip Mobility on the Bending Stresses Acting on the Lumbar Spine. Clin Biomech. 1993, 8: 185-192. 10.1016/0268-0033(93)90013-8.CrossRef Dolan P, Adams MA: Influence of Lumbar and Hip Mobility on the Bending Stresses Acting on the Lumbar Spine. Clin Biomech. 1993, 8: 185-192. 10.1016/0268-0033(93)90013-8.CrossRef
26.
go back to reference Doorenbosch CAM, Harlaar J, Roebroeck ME, Lankhorst GJ: Two Strategies of Transferring from Sit-to-Stand: the Activation of Monoarticular and Biarticular Muscles. J Biomech. 1994, 27: 1299-1307. 10.1016/0021-9290(94)90039-6.CrossRefPubMed Doorenbosch CAM, Harlaar J, Roebroeck ME, Lankhorst GJ: Two Strategies of Transferring from Sit-to-Stand: the Activation of Monoarticular and Biarticular Muscles. J Biomech. 1994, 27: 1299-1307. 10.1016/0021-9290(94)90039-6.CrossRefPubMed
27.
go back to reference Rao G, Amarantini D, Berton E: Influence of Additional Load on the Moments of the Agonist and Antagonist Muscle Groups at the Knee Joint during Closed Chain Exercise. J Electromyogr Kinesiol. Rao G, Amarantini D, Berton E: Influence of Additional Load on the Moments of the Agonist and Antagonist Muscle Groups at the Knee Joint during Closed Chain Exercise. J Electromyogr Kinesiol.
28.
go back to reference McGinity G, Irrgang JJ, Pezzullo D: Biomechanical Considerations for Rehabilitation of the Knee. Clin Biomech. 2000, 15: 160-166. 10.1016/S0268-0033(99)00061-3.CrossRef McGinity G, Irrgang JJ, Pezzullo D: Biomechanical Considerations for Rehabilitation of the Knee. Clin Biomech. 2000, 15: 160-166. 10.1016/S0268-0033(99)00061-3.CrossRef
29.
go back to reference Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR: Biomechanics of the Knee during Closed Kinetic Chain and Open Kinetic Chain Exercises. Med Sci Sports Exerc. 1998, 30: 556-569.CrossRefPubMed Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR: Biomechanics of the Knee during Closed Kinetic Chain and Open Kinetic Chain Exercises. Med Sci Sports Exerc. 1998, 30: 556-569.CrossRefPubMed
30.
go back to reference Zajac FE, Neptune RR, Kautz SA: Biomechanics and Muscle Coordination of Human Walking Part II: Lessons from Dynamical Simulations and Clinical Implications. Gait & Posture. 2003, 17: 1-17. 10.1016/S0966-6362(02)00069-3.CrossRef Zajac FE, Neptune RR, Kautz SA: Biomechanics and Muscle Coordination of Human Walking Part II: Lessons from Dynamical Simulations and Clinical Implications. Gait & Posture. 2003, 17: 1-17. 10.1016/S0966-6362(02)00069-3.CrossRef
31.
go back to reference Lombard WP: The Action of Two-joint Muscles. Am Phys Ed Rev. 1903, 8: 141-145. Lombard WP: The Action of Two-joint Muscles. Am Phys Ed Rev. 1903, 8: 141-145.
32.
go back to reference Lombard WP, Abbott FM: The Mechanical Effects Produced by the Contraction of Individual Muscles of the Thigh of the Frog. Am J Phys. 1907, 20: 1-60. Lombard WP, Abbott FM: The Mechanical Effects Produced by the Contraction of Individual Muscles of the Thigh of the Frog. Am J Phys. 1907, 20: 1-60.
Metadata
Title
Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting
Authors
Seonhong Hwang
Youngeun Kim
Youngho Kim
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2009
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-10-15

Other articles of this Issue 1/2009

BMC Musculoskeletal Disorders 1/2009 Go to the issue