Skip to main content
Top
Published in: BMC Public Health 1/2014

Open Access 01-12-2014 | Debate

Time to revisit arsenic regulations: comparing drinking water and rice

Author: Sébastien Sauvé

Published in: BMC Public Health | Issue 1/2014

Login to get access

Abstract

Background

Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated.

Discussion

Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold.

Summary

Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.
Appendix
Available only for authorised users
Literature
5.
go back to reference Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR: Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect. 2012, 120: 1418-1424. 10.1289/ehp.1205014.CrossRefPubMedPubMedCentral Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR: Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect. 2012, 120: 1418-1424. 10.1289/ehp.1205014.CrossRefPubMedPubMedCentral
6.
go back to reference Zhu Y-G, Williams PN, Meharg AA: Exposure to inorganic arsenic from rice: a global health issue?. Environ Pollut. 2008, 154: 169-171. 10.1016/j.envpol.2008.03.015.CrossRefPubMed Zhu Y-G, Williams PN, Meharg AA: Exposure to inorganic arsenic from rice: a global health issue?. Environ Pollut. 2008, 154: 169-171. 10.1016/j.envpol.2008.03.015.CrossRefPubMed
7.
go back to reference Bhattacharya P, Samal AC, Majumdar J, Banerjee S, Santra SC: In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal. India J Haz Mater. 2013, 262: 1658-1670. Bhattacharya P, Samal AC, Majumdar J, Banerjee S, Santra SC: In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal. India J Haz Mater. 2013, 262: 1658-1670.
8.
go back to reference Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu Y-G, Feldmann J, Raab A, Zhao F-J, Islam R, Hossain S, Yanai J: Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol. 2009, 43 (5): 1612-1617. 10.1021/es802612a.CrossRefPubMed Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu Y-G, Feldmann J, Raab A, Zhao F-J, Islam R, Hossain S, Yanai J: Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol. 2009, 43 (5): 1612-1617. 10.1021/es802612a.CrossRefPubMed
9.
go back to reference Gilbert-Diamond D, Cottingham AL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, Baker ER, Jackson BP, Folt CL, Karagas MR: Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci U S A. 2011, 108: 20656-20660. 10.1073/pnas.1109127108.CrossRefPubMedPubMedCentral Gilbert-Diamond D, Cottingham AL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, Baker ER, Jackson BP, Folt CL, Karagas MR: Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci U S A. 2011, 108: 20656-20660. 10.1073/pnas.1109127108.CrossRefPubMedPubMedCentral
10.
go back to reference Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B, Cao H, Aschebrook-Kilfoy B, Ahmed A, Tariqul Islam T, Slavcovich V, Gamble M, Haris PI, Graziano JH, Ahsan H: Urinary and dietary analysis of 18,470 Bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS One. 2013, 8 (11): e80691-10.1371/journal.pone.0080691.CrossRefPubMedPubMedCentral Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B, Cao H, Aschebrook-Kilfoy B, Ahmed A, Tariqul Islam T, Slavcovich V, Gamble M, Haris PI, Graziano JH, Ahsan H: Urinary and dietary analysis of 18,470 Bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS One. 2013, 8 (11): e80691-10.1371/journal.pone.0080691.CrossRefPubMedPubMedCentral
11.
go back to reference Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R: In Vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect. 2006, 114: 1826-1831.PubMedPubMedCentral Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R: In Vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect. 2006, 114: 1826-1831.PubMedPubMedCentral
12.
go back to reference Laparra JM, Velez D, Barbera R, Farre R, Montoro R: Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. J Agric Food Chem. 2005, 53 (22): 8829-8833. 10.1021/jf051365b.CrossRefPubMed Laparra JM, Velez D, Barbera R, Farre R, Montoro R: Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. J Agric Food Chem. 2005, 53 (22): 8829-8833. 10.1021/jf051365b.CrossRefPubMed
13.
go back to reference Rahman MA, Hasegawa H: High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ. 2011, 409 (22): 4645-4655. 10.1016/j.scitotenv.2011.07.068.CrossRefPubMed Rahman MA, Hasegawa H: High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ. 2011, 409 (22): 4645-4655. 10.1016/j.scitotenv.2011.07.068.CrossRefPubMed
14.
go back to reference Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S: Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006, 114: 1293-1296. 10.1289/ehp.8832.CrossRefPubMedPubMedCentral Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S: Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006, 114: 1293-1296. 10.1289/ehp.8832.CrossRefPubMedPubMedCentral
15.
go back to reference Lin H-J, Sung T-I, Chen C-Y, Guo H-R: Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J Haz Mater. 2013, 262: 1132-1138.CrossRef Lin H-J, Sung T-I, Chen C-Y, Guo H-R: Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J Haz Mater. 2013, 262: 1132-1138.CrossRef
16.
go back to reference Chen Y, Wu F, Parvez F, Ahmed A, Eunus M, McClintock TR, Patwary TI, Islam T, Ghosal AK, Islam S, Ghosal AK, Islam S, Hasan R, Levy D, Sarwar G, Slavkovich V, van Geen A, Graziano JH, Ahsan H: Arsenic exposure from drinking water and QT-interval prolongation: Results from the health effects of arsenic longitudinal study. Environ Health Perspect. 2013, doi:10.1289/ehp.1205197 Chen Y, Wu F, Parvez F, Ahmed A, Eunus M, McClintock TR, Patwary TI, Islam T, Ghosal AK, Islam S, Ghosal AK, Islam S, Hasan R, Levy D, Sarwar G, Slavkovich V, van Geen A, Graziano JH, Ahsan H: Arsenic exposure from drinking water and QT-interval prolongation: Results from the health effects of arsenic longitudinal study. Environ Health Perspect. 2013, doi:10.1289/ehp.1205197
17.
go back to reference Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng C-H, Thayer KA, Loomis D: Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review. Environ Health Perspect. 2012, 120: 1658-1670.PubMedPubMedCentral Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng C-H, Thayer KA, Loomis D: Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review. Environ Health Perspect. 2012, 120: 1658-1670.PubMedPubMedCentral
18.
go back to reference Kesari VP, Kumar A, Khan PK: Genotoxic potential of arsenic at its reference dose. Ecotoxicol Environ Saf. 2012, 80: 126-131.CrossRefPubMed Kesari VP, Kumar A, Khan PK: Genotoxic potential of arsenic at its reference dose. Ecotoxicol Environ Saf. 2012, 80: 126-131.CrossRefPubMed
19.
go back to reference Gibb H, Haver C, Gaylor D, Ramasamy S, Lee JS, Lobdell D, Wade T, Chen C, White P, Sams R: Utility of recent studies to assess the national research council 2001 estimates of cancer risk from ingested arsenic. Environ Health Perspect. 2011, 119 (3): 284-CrossRefPubMed Gibb H, Haver C, Gaylor D, Ramasamy S, Lee JS, Lobdell D, Wade T, Chen C, White P, Sams R: Utility of recent studies to assess the national research council 2001 estimates of cancer risk from ingested arsenic. Environ Health Perspect. 2011, 119 (3): 284-CrossRefPubMed
20.
go back to reference Tseng WP, Chu HM, How SW: Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968, 40: 453-463.PubMed Tseng WP, Chu HM, How SW: Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968, 40: 453-463.PubMed
21.
23.
go back to reference Hite AH: Arsenic and rice: a call for regulation. Nutrition. 2013, 29 (1): 353-354. 10.1016/j.nut.2012.10.001.CrossRefPubMed Hite AH: Arsenic and rice: a call for regulation. Nutrition. 2013, 29 (1): 353-354. 10.1016/j.nut.2012.10.001.CrossRefPubMed
24.
go back to reference Cantor KP, Lubin JH: Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmcol. 2007, 222 (3): 252-257. 10.1016/j.taap.2007.01.026.CrossRef Cantor KP, Lubin JH: Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmcol. 2007, 222 (3): 252-257. 10.1016/j.taap.2007.01.026.CrossRef
25.
go back to reference Meharg AA, Zhao F-J: Strategies for producing low arsenic rice. Arsenic & Rice. 2012, New York, NY: Springer, 139-151.CrossRef Meharg AA, Zhao F-J: Strategies for producing low arsenic rice. Arsenic & Rice. 2012, New York, NY: Springer, 139-151.CrossRef
26.
go back to reference Ye XX, Sun B, Yin YL: Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere. 2012, 87 (4): 384-389. 10.1016/j.chemosphere.2011.12.028.CrossRefPubMed Ye XX, Sun B, Yin YL: Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere. 2012, 87 (4): 384-389. 10.1016/j.chemosphere.2011.12.028.CrossRefPubMed
27.
go back to reference Sun G-X, Van de Wiele T, Alava P, Tack F, Du Laing G: Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract. Environ Pollut. 2012, 162: 241-246.CrossRefPubMed Sun G-X, Van de Wiele T, Alava P, Tack F, Du Laing G: Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract. Environ Pollut. 2012, 162: 241-246.CrossRefPubMed
28.
go back to reference Pasias IN, Thomaidis NS, Piperaki EA: Determination of total arsenic, total inorganic arsenic and inorganic arsenic species in rice and rice flour by electrothermal atomic absorption spectrometry. Microchem J. 2013, 108: 1-6.CrossRef Pasias IN, Thomaidis NS, Piperaki EA: Determination of total arsenic, total inorganic arsenic and inorganic arsenic species in rice and rice flour by electrothermal atomic absorption spectrometry. Microchem J. 2013, 108: 1-6.CrossRef
Metadata
Title
Time to revisit arsenic regulations: comparing drinking water and rice
Author
Sébastien Sauvé
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2014
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-14-465

Other articles of this Issue 1/2014

BMC Public Health 1/2014 Go to the issue