Skip to main content
Top
Published in: BMC Public Health 1/2013

Open Access 01-12-2013 | Research article

Auditory dysfunction associated with solvent exposure

Authors: Adrian Fuente, Bradley McPherson, Louise Hickson

Published in: BMC Public Health | Issue 1/2013

Login to get access

Abstract

Background

A number of studies have demonstrated that solvents may induce auditory dysfunction. However, there is still little knowledge regarding the main signs and symptoms of solvent-induced hearing loss (SIHL). The aim of this research was to investigate the association between solvent exposure and adverse effects on peripheral and central auditory functioning with a comprehensive audiological test battery.

Methods

Seventy-two solvent-exposed workers and 72 non-exposed workers were selected to participate in the study. The test battery comprised pure-tone audiometry (PTA), transient evoked otoacoustic emissions (TEOAE), Random Gap Detection (RGD) and Hearing-in-Noise test (HINT).

Results

Solvent-exposed subjects presented with poorer mean test results than non-exposed subjects. A bivariate and multivariate linear regression model analysis was performed. One model for each auditory outcome (PTA, TEOAE, RGD and HINT) was independently constructed. For all of the models solvent exposure was significantly associated with the auditory outcome. Age also appeared significantly associated with some auditory outcomes.

Conclusions

This study provides further evidence of the possible adverse effect of solvents on the peripheral and central auditory functioning. A discussion of these effects and the utility of selected hearing tests to assess SIHL is addressed.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chen MS, Chan A: China’s “market economics in command”: Footwear workers’ health in jeopardy. Int J Health Serv. 1999, 29: 793-811. 10.2190/4P4Y-3LYP-P5BX-T22E.CrossRefPubMed Chen MS, Chan A: China’s “market economics in command”: Footwear workers’ health in jeopardy. Int J Health Serv. 1999, 29: 793-811. 10.2190/4P4Y-3LYP-P5BX-T22E.CrossRefPubMed
3.
go back to reference Szulc-Kuberska J, Tronczynska J, Latkowski N: Oto-neurological investigations of chronic trichloroethylene poisoning. Minerva Otorinolaringol. 1976, 26: 108-112. Szulc-Kuberska J, Tronczynska J, Latkowski N: Oto-neurological investigations of chronic trichloroethylene poisoning. Minerva Otorinolaringol. 1976, 26: 108-112.
4.
go back to reference Campo P, Lataye R, Cossec B, et al: Toluene-induced hearing loss: a mid-frequency location of the cochlear lesions. Neurotoxicol Teratol. 1997, 19: 129-140. 10.1016/S0892-0362(96)00214-0.CrossRefPubMed Campo P, Lataye R, Cossec B, et al: Toluene-induced hearing loss: a mid-frequency location of the cochlear lesions. Neurotoxicol Teratol. 1997, 19: 129-140. 10.1016/S0892-0362(96)00214-0.CrossRefPubMed
5.
go back to reference Johnson AC, Canlon B: Progressive hair cell loss induced by toluene exposure. Hear Res. 1994, 75: 1-40. 10.1016/0378-5955(94)90050-7.CrossRef Johnson AC, Canlon B: Progressive hair cell loss induced by toluene exposure. Hear Res. 1994, 75: 1-40. 10.1016/0378-5955(94)90050-7.CrossRef
6.
go back to reference Crofton KM, Lassiter TL, Rebert CS: Solvent-induced ototoxicity in rats. an atypical selective mid-frequency hearing deficit. Hear Res. 1994, 80: 25-30. 10.1016/0378-5955(94)90005-1.CrossRefPubMed Crofton KM, Lassiter TL, Rebert CS: Solvent-induced ototoxicity in rats. an atypical selective mid-frequency hearing deficit. Hear Res. 1994, 80: 25-30. 10.1016/0378-5955(94)90005-1.CrossRefPubMed
7.
go back to reference Morata TC: Study of the effects of simultaneous exposure to noise and carbon disulfide on workers hearing. Scand Audiol. 1989, 1989 (18): 53-58.CrossRef Morata TC: Study of the effects of simultaneous exposure to noise and carbon disulfide on workers hearing. Scand Audiol. 1989, 1989 (18): 53-58.CrossRef
8.
go back to reference Morata TC, Fiorini AC, Fischer FM, et al: Toluene–induced hearing loss among rotogravure printing workers. Scand J Work Environ Health. 1997, 23: 289-298. 10.5271/sjweh.222.CrossRefPubMed Morata TC, Fiorini AC, Fischer FM, et al: Toluene–induced hearing loss among rotogravure printing workers. Scand J Work Environ Health. 1997, 23: 289-298. 10.5271/sjweh.222.CrossRefPubMed
9.
go back to reference Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, et al: Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occup Environ Med. 2003, 45: 15-24. 10.1097/00043764-200301000-00008.CrossRefPubMed Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, et al: Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occup Environ Med. 2003, 45: 15-24. 10.1097/00043764-200301000-00008.CrossRefPubMed
10.
go back to reference Fuente A, McPherson B: Central auditory processing effects induced by solvent exposure. Int J Occup Med Environ Health. 2007, 20: 271-279. 10.2478/v10001-007-0030-4.CrossRefPubMed Fuente A, McPherson B: Central auditory processing effects induced by solvent exposure. Int J Occup Med Environ Health. 2007, 20: 271-279. 10.2478/v10001-007-0030-4.CrossRefPubMed
11.
go back to reference Fuente A, Slade MD, Taylor T, et al: Peripheral and central auditory dysfunction induced by occupational exposure to organic solvents. J Occup Environ Med. 2009, 51: 1202-1211. 10.1097/JOM.0b013e3181bae17c.CrossRefPubMed Fuente A, Slade MD, Taylor T, et al: Peripheral and central auditory dysfunction induced by occupational exposure to organic solvents. J Occup Environ Med. 2009, 51: 1202-1211. 10.1097/JOM.0b013e3181bae17c.CrossRefPubMed
12.
go back to reference Sulkowski WJ, Kowalska S, Matyja W, et al: Effects of occupational exposure to a mixture of solvents on the inner ear: a field study. Int J Occup Med Environ Health. 2002, 15: 247-256.PubMed Sulkowski WJ, Kowalska S, Matyja W, et al: Effects of occupational exposure to a mixture of solvents on the inner ear: a field study. Int J Occup Med Environ Health. 2002, 15: 247-256.PubMed
13.
go back to reference Johnson AC, Morata TC, Lindblad AC, et al: Audiological findings in workers exposed to styrene alone or in concert with noise. Noise Health. 2006, 8: 45-57. 10.4103/1463-1741.32467.CrossRefPubMed Johnson AC, Morata TC, Lindblad AC, et al: Audiological findings in workers exposed to styrene alone or in concert with noise. Noise Health. 2006, 8: 45-57. 10.4103/1463-1741.32467.CrossRefPubMed
14.
go back to reference Ödkvist LM, Arlinger SD, Edling C, et al: Audiological and vestibule-oculomotor findings in workers exposed to solvents and jet fuel. Scand Audiol. 1987, 16: 75-81.CrossRefPubMed Ödkvist LM, Arlinger SD, Edling C, et al: Audiological and vestibule-oculomotor findings in workers exposed to solvents and jet fuel. Scand Audiol. 1987, 16: 75-81.CrossRefPubMed
15.
go back to reference Ödkvist LM, Moller C, Thuomas KA: Otoneurologic disturbances caused by solvent pollution. Otolaryngol Head Neck Surg. 1992, 106: 687-692.PubMed Ödkvist LM, Moller C, Thuomas KA: Otoneurologic disturbances caused by solvent pollution. Otolaryngol Head Neck Surg. 1992, 106: 687-692.PubMed
16.
go back to reference Laukli E, Hansen PW: An audiometric test battery for the evaluation of occupational exposure to industrial solvents. Acta Otolaryngol. 1995, 115: 162-164.CrossRefPubMed Laukli E, Hansen PW: An audiometric test battery for the evaluation of occupational exposure to industrial solvents. Acta Otolaryngol. 1995, 115: 162-164.CrossRefPubMed
17.
go back to reference Varney NR, Kubu CS, Morrow LA: Dichotic listening performances of patients with chronic exposure to organic solvents. Clin Neuropsychol. 1998, 12: 107-112. 10.1076/clin.12.1.107.1729.CrossRef Varney NR, Kubu CS, Morrow LA: Dichotic listening performances of patients with chronic exposure to organic solvents. Clin Neuropsychol. 1998, 12: 107-112. 10.1076/clin.12.1.107.1729.CrossRef
18.
go back to reference Zamyslowska-Szmytke E, Fuente A, Niebudek-Bogusz E, et al: Temporal processing disorder associated with styrene exposure. Audiol Neurotol. 2009, 14: 296-302. 10.1159/000212108.CrossRef Zamyslowska-Szmytke E, Fuente A, Niebudek-Bogusz E, et al: Temporal processing disorder associated with styrene exposure. Audiol Neurotol. 2009, 14: 296-302. 10.1159/000212108.CrossRef
19.
go back to reference Morata TC, Little MB: Suggested guidelines for studying the combined effects of occupational exposure to noise and chemicals on hearing. Noise Health. 2002, 4: 73-87.PubMed Morata TC, Little MB: Suggested guidelines for studying the combined effects of occupational exposure to noise and chemicals on hearing. Noise Health. 2002, 4: 73-87.PubMed
20.
go back to reference Jerger J: Clinical experience with impedance audiometry. Arch Otolaryngol. 1970, 92: 311-324. 10.1001/archotol.1970.04310040005002.CrossRefPubMed Jerger J: Clinical experience with impedance audiometry. Arch Otolaryngol. 1970, 92: 311-324. 10.1001/archotol.1970.04310040005002.CrossRefPubMed
21.
go back to reference Hughson W, Westlake HD: Manual for program outline for rehabilitation of aural casualties both military and civilian. Trans Am Acad Ophthalmol Otolaryngol. 1944, 48 (Suppl): 1-15. Hughson W, Westlake HD: Manual for program outline for rehabilitation of aural casualties both military and civilian. Trans Am Acad Ophthalmol Otolaryngol. 1944, 48 (Suppl): 1-15.
22.
go back to reference Carhart R, Jerger J: Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord. 1959, 24: 330-345.CrossRef Carhart R, Jerger J: Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord. 1959, 24: 330-345.CrossRef
23.
go back to reference Kemp DT, Ryan S, Bray P: A guide to the effective use of otoacoustic emissions. Ear Hear. 1990, 11: 93-105.CrossRefPubMed Kemp DT, Ryan S, Bray P: A guide to the effective use of otoacoustic emissions. Ear Hear. 1990, 11: 93-105.CrossRefPubMed
24.
go back to reference Shinn JB: Temporal processing and temporal patterning tests. Handbook of (Central) Auditory Processing Disorder, Auditory Neuroscience and Diagnosis. Edited by: Musiek FE, Chermak GD. 2007, San Diego Plural: Publishing, vol 1, 231-255. Shinn JB: Temporal processing and temporal patterning tests. Handbook of (Central) Auditory Processing Disorder, Auditory Neuroscience and Diagnosis. Edited by: Musiek FE, Chermak GD. 2007, San Diego Plural: Publishing, vol 1, 231-255.
25.
go back to reference Keith RW: Random Gap Detection Test. 2000, St. Louis: Auditec Keith RW: Random Gap Detection Test. 2000, St. Louis: Auditec
26.
go back to reference Nilsson M, Soli SD, Sullivan JA: Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. J Acoust Soc Am. 1994, 95: 1085-1099. 10.1121/1.408469.CrossRefPubMed Nilsson M, Soli SD, Sullivan JA: Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. J Acoust Soc Am. 1994, 95: 1085-1099. 10.1121/1.408469.CrossRefPubMed
27.
go back to reference Fuente A, McPherson B: Organic solvents and hearing loss: the challenge for audiology. Int J Audiol. 2006, 45: 367-381. 10.1080/14992020600753205.CrossRefPubMed Fuente A, McPherson B: Organic solvents and hearing loss: the challenge for audiology. Int J Audiol. 2006, 45: 367-381. 10.1080/14992020600753205.CrossRefPubMed
28.
go back to reference Morata TC, Johnson AC, Nylen P, et al: Audiometric findings in workers exposed to low levels of styrene and noise. J Occup Environ Med. 2000, 44: 806-814.CrossRef Morata TC, Johnson AC, Nylen P, et al: Audiometric findings in workers exposed to low levels of styrene and noise. J Occup Environ Med. 2000, 44: 806-814.CrossRef
29.
go back to reference Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, et al: Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occupl Environ Med. 2003, 45: 15-24. 10.1097/00043764-200301000-00008.CrossRef Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, et al: Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occupl Environ Med. 2003, 45: 15-24. 10.1097/00043764-200301000-00008.CrossRef
30.
go back to reference Chang SJ, Chen CJ, Lien CH, et al: Hearing loss in workers exposed to toluene and noise. Environ Health Perspect. 2006, 114: 1283-1286. 10.1289/ehp.8959.CrossRefPubMedPubMedCentral Chang SJ, Chen CJ, Lien CH, et al: Hearing loss in workers exposed to toluene and noise. Environ Health Perspect. 2006, 114: 1283-1286. 10.1289/ehp.8959.CrossRefPubMedPubMedCentral
31.
go back to reference Brant LJ, Fozard JL: Age changes in pure-tone thresholds in a longitudinal study of normal human aging. J Acoust Soc Am. 1990, 88: 813-820. 10.1121/1.399731.CrossRefPubMed Brant LJ, Fozard JL: Age changes in pure-tone thresholds in a longitudinal study of normal human aging. J Acoust Soc Am. 1990, 88: 813-820. 10.1121/1.399731.CrossRefPubMed
32.
go back to reference Acoustics -- Statistical distribution of hearing thresholds as a function of age. ISO 7029:2000 Acoustics -- Statistical distribution of hearing thresholds as a function of age. ISO 7029:2000
33.
go back to reference Loquet G, Campo P, Lataye R: Comparison of toluene-induced and styrene-induced hearing losses. Neurotoxicol Teratol. 1999, 21: 689-697. 10.1016/S0892-0362(99)00030-6.CrossRefPubMed Loquet G, Campo P, Lataye R: Comparison of toluene-induced and styrene-induced hearing losses. Neurotoxicol Teratol. 1999, 21: 689-697. 10.1016/S0892-0362(99)00030-6.CrossRefPubMed
34.
go back to reference Hwang JH, Tan CT, Chiang CW, et al: Acute effects of alcohol on auditory thresholds and distortion product otoacoustic emissions in humans. Acta Otolaryngol. 2003, 123: 936-940. 10.1080/00016480310014877.CrossRefPubMed Hwang JH, Tan CT, Chiang CW, et al: Acute effects of alcohol on auditory thresholds and distortion product otoacoustic emissions in humans. Acta Otolaryngol. 2003, 123: 936-940. 10.1080/00016480310014877.CrossRefPubMed
35.
go back to reference Cacace AT, McClelland WA, Weiner J, et al: Individual differences and the reliability of 2 F1-F2 distortion-product otoacoustic emissions: effects of time-of-day, stimulus variables, and gender. J Speech Hear Res. 1996, 39: 1138-1148.CrossRefPubMed Cacace AT, McClelland WA, Weiner J, et al: Individual differences and the reliability of 2 F1-F2 distortion-product otoacoustic emissions: effects of time-of-day, stimulus variables, and gender. J Speech Hear Res. 1996, 39: 1138-1148.CrossRefPubMed
36.
go back to reference Dreisbach LE, Kramer SJ, Cobos S, et al: Racial and gender effects on pure-tone thresholds and distortion-product otoacoustic emissions (DPOAEs) in normal-hearing young adults. Int J Audiol. 2007, 46: 419-426. 10.1080/14992020701355074.CrossRefPubMed Dreisbach LE, Kramer SJ, Cobos S, et al: Racial and gender effects on pure-tone thresholds and distortion-product otoacoustic emissions (DPOAEs) in normal-hearing young adults. Int J Audiol. 2007, 46: 419-426. 10.1080/14992020701355074.CrossRefPubMed
37.
go back to reference Chisolm TH, Willott JF, Lister JJ: The aging auditory system: anatomic and physiologic changes and implications for rehabilitation. Int J Audiol. 2003, 42 (2): 2S3-2S10.PubMed Chisolm TH, Willott JF, Lister JJ: The aging auditory system: anatomic and physiologic changes and implications for rehabilitation. Int J Audiol. 2003, 42 (2): 2S3-2S10.PubMed
38.
go back to reference Musiek FE, Shinn JB, Jirsa R, et al: GIN (gaps-in-noise) test performance in subjects with confirmed central auditory nervous system involvement. Ear Hear. 2005, 26: 608-618. 10.1097/01.aud.0000188069.80699.41.CrossRefPubMed Musiek FE, Shinn JB, Jirsa R, et al: GIN (gaps-in-noise) test performance in subjects with confirmed central auditory nervous system involvement. Ear Hear. 2005, 26: 608-618. 10.1097/01.aud.0000188069.80699.41.CrossRefPubMed
39.
go back to reference Gopal KV: Audiological findings in individuals exposed to organic solvents: case studies. Noise Health. 2008, 10: 74-82. 10.4103/1463-1741.44345.CrossRefPubMed Gopal KV: Audiological findings in individuals exposed to organic solvents: case studies. Noise Health. 2008, 10: 74-82. 10.4103/1463-1741.44345.CrossRefPubMed
40.
go back to reference Tremblay KL, Billings C, Rohila A: Speech evoked cortical potentials: effects of age and stimulus presentation rate. J Am Acad Audiol. 2004, 15: 226-237. 10.3766/jaaa.15.3.5.CrossRefPubMed Tremblay KL, Billings C, Rohila A: Speech evoked cortical potentials: effects of age and stimulus presentation rate. J Am Acad Audiol. 2004, 15: 226-237. 10.3766/jaaa.15.3.5.CrossRefPubMed
41.
go back to reference Healy EW, Bacon SP: Effect of spectral frequency range and separation on the perception of asynchronous speech. J Acoust Soc Am. 2007, 121: 1691-1700. 10.1121/1.2427113.CrossRefPubMed Healy EW, Bacon SP: Effect of spectral frequency range and separation on the perception of asynchronous speech. J Acoust Soc Am. 2007, 121: 1691-1700. 10.1121/1.2427113.CrossRefPubMed
42.
go back to reference Sliwinska-Kowalska M, Prasher D, Rodrigues CA, et al: Ototoxicity of organic solvents - from scientific evidence to health policy. Int J Occup Med Environ Health. 2007, 20: 215-222. 10.2478/v10001-007-0021-5.PubMed Sliwinska-Kowalska M, Prasher D, Rodrigues CA, et al: Ototoxicity of organic solvents - from scientific evidence to health policy. Int J Occup Med Environ Health. 2007, 20: 215-222. 10.2478/v10001-007-0021-5.PubMed
Metadata
Title
Auditory dysfunction associated with solvent exposure
Authors
Adrian Fuente
Bradley McPherson
Louise Hickson
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2013
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-13-39

Other articles of this Issue 1/2013

BMC Public Health 1/2013 Go to the issue