Skip to main content
Top
Published in: BMC Public Health 1/2012

Open Access 01-12-2012 | Research article

Dengue vector management using insecticide treated materials and targeted interventions on productive breeding-sites in Guatemala

Authors: Nidia Rizzo, Rodrigo Gramajo, Maria Cabrera Escobar, Byron Arana, Axel Kroeger, Pablo Manrique-Saide, Max Petzold

Published in: BMC Public Health | Issue 1/2012

Login to get access

Abstract

Background

In view of the epidemiological expansion of dengue worldwide and the availability of new tools and strategies particularly for controlling the primary dengue vector Aedes aegypti, an intervention study was set up to test the efficacy, cost and feasibility of a combined approach of insecticide treated materials (ITMs) alone and in combination with appropriate targeted interventions of the most productive vector breeding-sites.

Methods

The study was conducted as a cluster randomized community trial using “reduction of the vector population” as the main outcome variable. The trial had two arms: 10 intervention clusters (neighborhoods) and 10 control clusters in the town of Poptun Guatemala. Activities included entomological assessments (characteristics of breeding-sites, pupal productivity, Stegomyia indices) at baseline, 6 weeks after the first intervention (coverage of window and exterior doorways made of PermaNet 2.0 netting, factory treated with deltamethrin at 55 mg/m2, and of 200 L drums with similar treated material) and 6 weeks after the second intervention (combination of treated materials and other suitable interventions targeting productive breeding-sites i.e larviciding with Temephos, elimination etc.). The second intervention took place 17 months after the first intervention. The insecticide residual activity and the insecticidal content were also studied at different intervals. Additionally, information about demographic characteristics, cost of the intervention, coverage of houses protected and satisfaction in the population with the interventions was collected.

Results

At baseline (during the dry season) a variety of productive container types for Aedes pupae were identified: various container types holding >20 L, 200 L drums, washbasins and buckets (producing 83.7% of all pupae). After covering 100% of windows and exterior doorways and a small number of drums (where the commercial cover could be fixed) in 970 study households, tropical rains occurred in the area and lead to an increase of the vector population, more pronounced (but statistically not significant) in the control arm than in the intervention arm. In the second intervention (17 months later and six weeks after implementing the second intervention) the combined approach of ITMs and a combination of appropriate interventions against productive containers (Temephos in >200 L water drums, elimination of small discarded tins and bottles) lead to significant differences on reductions of the total number of pupae (P = 0.04) and the House index (P = 0.01) between intervention and control clusters, and to borderline differences on reductions of the Pupae per Person and Breteau indices (P = 0.05). The insecticide residual activity on treated curtains was high until month 18 but the chemical concentration showed a high variability. The cost per house protected with treated curtains and drum covers and targeting productive breeding-sites of the dengue vector was $ 5.31 USD. The acceptance of the measure was generally high, particularly in families who had experienced dengue.

Conclusion

Even under difficult environmental conditions (open houses, tropical rainfall, challenging container types mainly in the peridomestic environment) the combination of insecticide treated curtains and to a less extent drum covers and interventions targeting the productive container types can reduce the dengue vector population significantly.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO/TDR: Report of the scientific working group on dengue 1-5 October 2006 (TDR/SWG/08). 2007, World Health Organization, Geneva WHO/TDR: Report of the scientific working group on dengue 1-5 October 2006 (TDR/SWG/08). 2007, World Health Organization, Geneva
2.
go back to reference WHO: Dengue: Guidelines for diagnosis, treatment, prevention and control. 2009, WHO, Geneva WHO: Dengue: Guidelines for diagnosis, treatment, prevention and control. 2009, WHO, Geneva
3.
go back to reference Kittayapong P, Yoksan S, Chansang U, Chansang C, Bhumiratana A: Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci. AmJTrop Med Hyg. 2008, 78: 70-76. Kittayapong P, Yoksan S, Chansang U, Chansang C, Bhumiratana A: Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci. AmJTrop Med Hyg. 2008, 78: 70-76.
4.
go back to reference Suaya JA, Shepard DS, Chang MS, Caram M, Hoyer S, Socheat D, et al: Cost-effectiveness of annual targeted larviciding campaigns in Cambodia against the dengue vector Aedes aegypti. Trop Med Int Health. 2007, 12: 1026-1036. 10.1111/j.1365-3156.2007.01889.x.CrossRefPubMed Suaya JA, Shepard DS, Chang MS, Caram M, Hoyer S, Socheat D, et al: Cost-effectiveness of annual targeted larviciding campaigns in Cambodia against the dengue vector Aedes aegypti. Trop Med Int Health. 2007, 12: 1026-1036. 10.1111/j.1365-3156.2007.01889.x.CrossRefPubMed
5.
go back to reference Nathan MB: Critical review of Aedes aegypti control programs in the Caribbean and selected neighboring countries. J Am Mosq Control Assoc. 1993, 9: 1-7.PubMed Nathan MB: Critical review of Aedes aegypti control programs in the Caribbean and selected neighboring countries. J Am Mosq Control Assoc. 1993, 9: 1-7.PubMed
6.
go back to reference Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A: Dengue vector control services: how do they work?A systematic literature review and country case studies. Trans R Soc Trop Med Hyg. 2010, 104: 379-386. 10.1016/j.trstmh.2009.07.027.CrossRefPubMed Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A: Dengue vector control services: how do they work?A systematic literature review and country case studies. Trans R Soc Trop Med Hyg. 2010, 104: 379-386. 10.1016/j.trstmh.2009.07.027.CrossRefPubMed
7.
go back to reference Toledo ME, Vanlerberghe V, Baly A, Ceballos E, Valdes L, Searret M, Boelaert M, van der Stuyft P: Towards active community participation in dengue vector control: results from action research in Santiago de Cuba, Cuba. Trans R Soc Trop Med Hyg. 2007, 101: 56-63. 10.1016/j.trstmh.2006.03.006.CrossRefPubMed Toledo ME, Vanlerberghe V, Baly A, Ceballos E, Valdes L, Searret M, Boelaert M, van der Stuyft P: Towards active community participation in dengue vector control: results from action research in Santiago de Cuba, Cuba. Trans R Soc Trop Med Hyg. 2007, 101: 56-63. 10.1016/j.trstmh.2006.03.006.CrossRefPubMed
8.
go back to reference Heintze C, Velasco Garrido M, Kroeger A: What do community-based dengue control programmes achieve?A systematic review of published evaluations. Trans R Soc Trop Med Hyg. 2007, 101: 317-325. 10.1016/j.trstmh.2006.08.007.CrossRefPubMed Heintze C, Velasco Garrido M, Kroeger A: What do community-based dengue control programmes achieve?A systematic review of published evaluations. Trans R Soc Trop Med Hyg. 2007, 101: 317-325. 10.1016/j.trstmh.2006.08.007.CrossRefPubMed
9.
go back to reference Lloyd LS, Winch P, Ortega-Canto J, Kendall C: The design of a community-based health education intervention for the control of Aedes aegypti. Am J Trop Med Hyg. 1994, 50: 401-411.PubMed Lloyd LS, Winch P, Ortega-Canto J, Kendall C: The design of a community-based health education intervention for the control of Aedes aegypti. Am J Trop Med Hyg. 1994, 50: 401-411.PubMed
10.
go back to reference Elder J, Lloyd L: Achieving behaviors change for dengue control: methods, scaling up and sustainability. Report of the scientific working group on Dengue. 1-5 October 2006. TDR/SWG/08. 2007, World Health Organization, Geneva Elder J, Lloyd L: Achieving behaviors change for dengue control: methods, scaling up and sustainability. Report of the scientific working group on Dengue. 1-5 October 2006. TDR/SWG/08. 2007, World Health Organization, Geneva
11.
go back to reference Baly A, Toledo ME, Vanlerberghe V, Ceballos E, Reyes A, Sanchez I, Carvajal M, Maso R, La Rosa M, Denis O, Boelaert M, Van der Stuyft P: Cost-effectiveness of a community-based approach intertwined with a vertical Aedes control program. AmJTrop Med Hyg. 2009, 81: 88-93. Baly A, Toledo ME, Vanlerberghe V, Ceballos E, Reyes A, Sanchez I, Carvajal M, Maso R, La Rosa M, Denis O, Boelaert M, Van der Stuyft P: Cost-effectiveness of a community-based approach intertwined with a vertical Aedes control program. AmJTrop Med Hyg. 2009, 81: 88-93.
12.
go back to reference Ekpereonne E, Lenhart A, Smith L, Horstick O: Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health. 2010, 15: 619-631. Ekpereonne E, Lenhart A, Smith L, Horstick O: Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health. 2010, 15: 619-631.
13.
go back to reference Toledo ME, Baly A, Vanlerberghe V, Rodriguez M, Benitez JR, Duvergel J, et al: The unbearable lightness of technocratic efforts at dengue control. Trop Med Int Health. 2008, 13: 728-736. 10.1111/j.1365-3156.2008.02046.x.CrossRefPubMed Toledo ME, Baly A, Vanlerberghe V, Rodriguez M, Benitez JR, Duvergel J, et al: The unbearable lightness of technocratic efforts at dengue control. Trop Med Int Health. 2008, 13: 728-736. 10.1111/j.1365-3156.2008.02046.x.CrossRefPubMed
14.
go back to reference Tun-Lin W, Lenhart A, Nam VS, Rebollar-Téllez E, Morrison AC, Barbazan P, Cote M, Midega J, Sanchez F, Manrique-Saide P, Kroeger A, Nathan MB, Meheus F, Petzold M: Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: a multi-country non-inferiority cluster randomized trial. Trop Med Int Health. 2009, 14: 1143-1153. 10.1111/j.1365-3156.2009.02341.x.CrossRefPubMed Tun-Lin W, Lenhart A, Nam VS, Rebollar-Téllez E, Morrison AC, Barbazan P, Cote M, Midega J, Sanchez F, Manrique-Saide P, Kroeger A, Nathan MB, Meheus F, Petzold M: Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: a multi-country non-inferiority cluster randomized trial. Trop Med Int Health. 2009, 14: 1143-1153. 10.1111/j.1365-3156.2009.02341.x.CrossRefPubMed
15.
go back to reference Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, et al: Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ. 2006, 332: 1247-1252. 10.1136/bmj.332.7552.1247.CrossRefPubMedPubMedCentral Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, et al: Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ. 2006, 332: 1247-1252. 10.1136/bmj.332.7552.1247.CrossRefPubMedPubMedCentral
16.
go back to reference Lenhart A, Orelus N, Maskill R, Alexander N, Streit T, McCall PJ: Insecticide-treated bednets to control dengue vectors: preliminary evidence from a controlled trial in Haiti. Trop Med Int Health. 2008, 13: 56-67. 10.1111/j.1365-3156.2007.01966.x.CrossRefPubMed Lenhart A, Orelus N, Maskill R, Alexander N, Streit T, McCall PJ: Insecticide-treated bednets to control dengue vectors: preliminary evidence from a controlled trial in Haiti. Trop Med Int Health. 2008, 13: 56-67. 10.1111/j.1365-3156.2007.01966.x.CrossRefPubMed
17.
go back to reference Vanlerberghe V, Villegas E, Oviedo M, Baly A, Lenhart A, McCall PJ, Van der Stuyft P: Evaluation of the effectiveness of insecticide treated materials for household level dengue vector control. PLoS Negl Trop Dis. 2011, 5 (3): e994-10.1371/journal.pntd.0000994.CrossRefPubMedPubMedCentral Vanlerberghe V, Villegas E, Oviedo M, Baly A, Lenhart A, McCall PJ, Van der Stuyft P: Evaluation of the effectiveness of insecticide treated materials for household level dengue vector control. PLoS Negl Trop Dis. 2011, 5 (3): e994-10.1371/journal.pntd.0000994.CrossRefPubMedPubMedCentral
18.
go back to reference Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme W, Wai KT, Tyagi BK, Kroeger A, Sommerfeld J, Petzold M: Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ. 2010, 88: 173-184. 10.2471/BLT.09.067892.CrossRefPubMedPubMedCentral Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme W, Wai KT, Tyagi BK, Kroeger A, Sommerfeld J, Petzold M: Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ. 2010, 88: 173-184. 10.2471/BLT.09.067892.CrossRefPubMedPubMedCentral
20.
go back to reference Focks DA: A review of entomological sampling methods and indicators for dengue vectors. Special programme for research and training in tropical diseases. 2003, World Health Organization, Geneva, TDR/IDE/Den/03.1 Focks DA: A review of entomological sampling methods and indicators for dengue vectors. Special programme for research and training in tropical diseases. 2003, World Health Organization, Geneva, TDR/IDE/Den/03.1
21.
go back to reference Focks D, Alexander N: Multicountry study of Aedes aegypti pupal productivity survey methodology. 2006, World Health Organization, Geneva, (TDR/IRM/ DEN/06.1) Focks D, Alexander N: Multicountry study of Aedes aegypti pupal productivity survey methodology. 2006, World Health Organization, Geneva, (TDR/IRM/ DEN/06.1)
22.
go back to reference WHO: Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. 2006, World Health Organization, Geneva, WHO/CDS/NTD/WHOPES/GCDPP/2006.3 WHO: Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. 2006, World Health Organization, Geneva, WHO/CDS/NTD/WHOPES/GCDPP/2006.3
23.
go back to reference Abbot WS: A method of computing the effectiveness of an insecticide. J. of Economic Entomology. 1925, 18: 265-267.CrossRef Abbot WS: A method of computing the effectiveness of an insecticide. J. of Economic Entomology. 1925, 18: 265-267.CrossRef
24.
go back to reference Abeyewickreme W, Arunachalam N, Tana S, Fe E, Kittayapong P, Thet Wai K, Hapanagama D, Kishore T, Htun PT, Koyadun S, Kroeger A, Sommerfeld J, Petzold M: Estimating dengue vector abundance in the wet and dry season: Implications for targeted vector control in urban and peri-urban Asia. PLOS-NTD. 2012,  :  -in press Abeyewickreme W, Arunachalam N, Tana S, Fe E, Kittayapong P, Thet Wai K, Hapanagama D, Kishore T, Htun PT, Koyadun S, Kroeger A, Sommerfeld J, Petzold M: Estimating dengue vector abundance in the wet and dry season: Implications for targeted vector control in urban and peri-urban Asia. PLOS-NTD. 2012,  :  -in press
25.
go back to reference Kroeger A, Ayala C, Medina-Lara A: Unit costs for housespraying and bed net impregnation with residual insecticides in Colombia: a management tool for the control of vector borne disease. Ann Trop Med Parasit. 2002, 96: 405-416. 10.1179/000349802125001159.CrossRefPubMed Kroeger A, Ayala C, Medina-Lara A: Unit costs for housespraying and bed net impregnation with residual insecticides in Colombia: a management tool for the control of vector borne disease. Ann Trop Med Parasit. 2002, 96: 405-416. 10.1179/000349802125001159.CrossRefPubMed
Metadata
Title
Dengue vector management using insecticide treated materials and targeted interventions on productive breeding-sites in Guatemala
Authors
Nidia Rizzo
Rodrigo Gramajo
Maria Cabrera Escobar
Byron Arana
Axel Kroeger
Pablo Manrique-Saide
Max Petzold
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2012
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-12-931

Other articles of this Issue 1/2012

BMC Public Health 1/2012 Go to the issue