Skip to main content
Top
Published in: BMC Public Health 1/2011

Open Access 01-12-2011 | Research article

Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegyptiin villages in Karnataka, India

Authors: Susanta K Ghosh, Preethi Chakaravarthy, Sandhya R Panch, Pushpalatha Krishnappa, Satyanarayan Tiwari, Vijay P Ojha, Manjushree R, Aditya P Dash

Published in: BMC Public Health | Issue 1/2011

Login to get access

Abstract

Background

In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control.

Methods

Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations.

Results

Only 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda.

Conclusions

Poecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude that Poecilia + IEC is an effective intervention strategy. The operational cost was 0.50 (US$ 0.011, 1 US$= 47) per capita per application. Proper water storage practices, focused IEC with Poecilia introductions and vector sanitation involving the local administration and community, is suggested as the best strategy for Aedes control.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pialoux G, Bernard-Alex Gaüzère, Jauréguiberry S, Strobel M: Chikungunya, an epidemic arbovirosis. Lancet Inf Dis. 2007, 7: 319-327. 10.1016/S1473-3099(07)70107-X.CrossRef Pialoux G, Bernard-Alex Gaüzère, Jauréguiberry S, Strobel M: Chikungunya, an epidemic arbovirosis. Lancet Inf Dis. 2007, 7: 319-327. 10.1016/S1473-3099(07)70107-X.CrossRef
2.
go back to reference Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep AB, Gandhe SS, Gokhle MD, Jacob GP, Hundekar SL, Mishra AC: Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis. 2006, 12: 1580-1583.CrossRefPubMedPubMedCentral Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep AB, Gandhe SS, Gokhle MD, Jacob GP, Hundekar SL, Mishra AC: Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis. 2006, 12: 1580-1583.CrossRefPubMedPubMedCentral
3.
go back to reference National Vector Borne Disease Control Programme (NVBDCP): Chikungunya in India in 2006. Directorate General of Health Services, Ministry of Health & Family Welfare Services, Government of India, New Delhi. 2006 National Vector Borne Disease Control Programme (NVBDCP): Chikungunya in India in 2006. Directorate General of Health Services, Ministry of Health & Family Welfare Services, Government of India, New Delhi. 2006
4.
go back to reference Ghosh SK, Dash AP: Larvivorous fish against malaria vector: a new outlook. Trans R Soc Trop Med Hyg. 2007, 101: 1063-1064. 10.1016/j.trstmh.2007.07.008.CrossRefPubMed Ghosh SK, Dash AP: Larvivorous fish against malaria vector: a new outlook. Trans R Soc Trop Med Hyg. 2007, 101: 1063-1064. 10.1016/j.trstmh.2007.07.008.CrossRefPubMed
5.
go back to reference MartiNez-Ibarra JA, Arredondo-Jiménez JI, Rodríguez-López MH: Indigenous fish species for the control of Aedes aegypti in water storage tanks in Southern Mexico. Biocontrol. 2002, 47: 481-486. 10.1023/A:1015691831489.CrossRef MartiNez-Ibarra JA, Arredondo-Jiménez JI, Rodríguez-López MH: Indigenous fish species for the control of Aedes aegypti in water storage tanks in Southern Mexico. Biocontrol. 2002, 47: 481-486. 10.1023/A:1015691831489.CrossRef
6.
go back to reference Ghosh SK, Tiwari SN, Sathyanarayan TS, Sampath TRR, Sharma VP, Nanda N, Joshi H, Adak T, Subbarao SK: Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in Karnataka, India. Trans R Soc Trop Med Hyg. 2005, 99: 101-105. 10.1016/j.trstmh.2004.03.009.CrossRefPubMed Ghosh SK, Tiwari SN, Sathyanarayan TS, Sampath TRR, Sharma VP, Nanda N, Joshi H, Adak T, Subbarao SK: Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in Karnataka, India. Trans R Soc Trop Med Hyg. 2005, 99: 101-105. 10.1016/j.trstmh.2004.03.009.CrossRefPubMed
7.
go back to reference Pamplona LGC, Alencar CH, Lima JWO, Heukelbach J: Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish. Trop Med Int Health. 2009, 14: 1347-1350. 10.1111/j.1365-3156.2009.02377.x.CrossRef Pamplona LGC, Alencar CH, Lima JWO, Heukelbach J: Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish. Trop Med Int Health. 2009, 14: 1347-1350. 10.1111/j.1365-3156.2009.02377.x.CrossRef
8.
go back to reference Sharma VP: Role of fishes in vector control in India. Larvivorous Fishes of Inland Ecosystems. 1984, Malaria Research Centre (ICMR), Delhi, 1-19. Sharma VP: Role of fishes in vector control in India. Larvivorous Fishes of Inland Ecosystems. 1984, Malaria Research Centre (ICMR), Delhi, 1-19.
9.
go back to reference Kay B, Vu SN: New strategy against Aedes aegypti in Vietnam. Lancet. 2005, 365: 613-617.PubMed Kay B, Vu SN: New strategy against Aedes aegypti in Vietnam. Lancet. 2005, 365: 613-617.PubMed
10.
go back to reference Nam VS, Yen NT, Holynska M, Reid JW Kay BH: National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. Am J Trop Med Hyg. 2000, 62: 5-10.PubMed Nam VS, Yen NT, Holynska M, Reid JW Kay BH: National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. Am J Trop Med Hyg. 2000, 62: 5-10.PubMed
11.
go back to reference Lardeux FJ: Biological control of Culicidae with the copepod Mesocyclops aspericornis and larvivorous fish (Poeciliidae) in a village of French Polynesia. Med Vet Ent. 1992, 6: 9-15. 10.1111/j.1365-2915.1992.tb00028.x.CrossRef Lardeux FJ: Biological control of Culicidae with the copepod Mesocyclops aspericornis and larvivorous fish (Poeciliidae) in a village of French Polynesia. Med Vet Ent. 1992, 6: 9-15. 10.1111/j.1365-2915.1992.tb00028.x.CrossRef
12.
go back to reference Wang CH, Chang NT, Wu HH, Ho CM: Integrated control of the Dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan. J Am Mosq Cont Assn. 2000, 16: 93-99. Wang CH, Chang NT, Wu HH, Ho CM: Integrated control of the Dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan. J Am Mosq Cont Assn. 2000, 16: 93-99.
13.
go back to reference Wu N, Wang S, Han G, Xu R, Tang G, Qian C: Control of Aedes aegypti larvae in household water containers by Chinese catfish. Bull World Health Organ. 1987, 65: 503-506.PubMed Wu N, Wang S, Han G, Xu R, Tang G, Qian C: Control of Aedes aegypti larvae in household water containers by Chinese catfish. Bull World Health Organ. 1987, 65: 503-506.PubMed
14.
go back to reference Phuanukoonnon S, Mueller I, Bryan JH: Effectiveness of dengue control practices in household water containers in Northeast Thailand. Trop Med Int Health. 2005, 10: 755-763. 10.1111/j.1365-3156.2005.01452.x.CrossRefPubMed Phuanukoonnon S, Mueller I, Bryan JH: Effectiveness of dengue control practices in household water containers in Northeast Thailand. Trop Med Int Health. 2005, 10: 755-763. 10.1111/j.1365-3156.2005.01452.x.CrossRefPubMed
15.
go back to reference Pamplona LGC: Potencial de cinco espe' cies de peixe como me'todo de controle biolo' gico de larvas de Aedes aegypti, em condic¸o˜ es de laborato' rio, no Ceara'. MS thesis. 2006, Federal University of Ceara', Ceara', Brazil, [Personal communication] Pamplona LGC: Potencial de cinco espe' cies de peixe como me'todo de controle biolo' gico de larvas de Aedes aegypti, em condic¸o˜ es de laborato' rio, no Ceara'. MS thesis. 2006, Federal University of Ceara', Ceara', Brazil, [Personal communication]
16.
go back to reference Seng CM, Setha T, Nealon J, Socheat D, Chantha N, Nathan MB: Community based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. J Vector Ecology. 2008, 33: 139-144. 10.3376/1081-1710(2008)33[139:CUOTLF]2.0.CO;2.CrossRef Seng CM, Setha T, Nealon J, Socheat D, Chantha N, Nathan MB: Community based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. J Vector Ecology. 2008, 33: 139-144. 10.3376/1081-1710(2008)33[139:CUOTLF]2.0.CO;2.CrossRef
17.
go back to reference Lima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares Sda S, Braga IA, Ramos RP, Valle D: Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espirito Santo, Brazil. Am J Trop Med Hyg. 2003, 68: 329-333.PubMed Lima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares Sda S, Braga IA, Ramos RP, Valle D: Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espirito Santo, Brazil. Am J Trop Med Hyg. 2003, 68: 329-333.PubMed
18.
go back to reference National Vector Borne Disease Control Programme (NVBDCP): Report on Chikungunya in Karnataka. Directorate of Health Services, Government of Karnataka, Bangalore, India. 2009 National Vector Borne Disease Control Programme (NVBDCP): Report on Chikungunya in Karnataka. Directorate of Health Services, Government of Karnataka, Bangalore, India. 2009
Metadata
Title
Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegyptiin villages in Karnataka, India
Authors
Susanta K Ghosh
Preethi Chakaravarthy
Sandhya R Panch
Pushpalatha Krishnappa
Satyanarayan Tiwari
Vijay P Ojha
Manjushree R
Aditya P Dash
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2011
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-11-599

Other articles of this Issue 1/2011

BMC Public Health 1/2011 Go to the issue