Skip to main content
Top
Published in: BMC Ophthalmology 1/2011

Open Access 01-12-2011 | Research article

Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics

Authors: Dimitrios Bizios, Anders Heijl, Boel Bengtsson

Published in: BMC Ophthalmology | Issue 1/2011

Login to get access

Abstract

Background

The performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for the diagnosis of glaucoma using Artificial Neural Networks (ANNs).

Methods

Humphrey 24-2 SITA standard SAP and StratusOCT tests were prospectively collected from a randomly selected population of 125 healthy persons and 135 patients with glaucomatous optic nerve heads and used as input for the ANNs. We tested commercially available standard parameters as well as novel ones (fused OCT and SAP data) that exploit the spatial relationship between visual field areas and sectors of the OCT peripapillary scan circle. We evaluated the performance of these SAP and OCT derived parameters both separately and in combination.

Results

The diagnostic accuracy from a combination of fused SAP and OCT data (95.39%) was higher than that of the best conventional parameters of either instrument, i.e. SAP Glaucoma Hemifield Test (p < 0.001) and OCT Retinal Nerve Fiber Layer Thickness ≥ 1 quadrant (p = 0.031). Fused OCT and combined fused OCT and SAP data provided similar Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978 that were significantly larger (p = 0.047) compared to ANNs using SAP parameters alone (AROC = 0.945). On the other hand, ANNs based on the OCT parameters (AROC = 0.970) did not perform significantly worse than the ANNs based on the fused or combined forms of input data. The use of fused input increased the number of tests that were correctly classified by both SAP and OCT based ANNs.

Conclusions

Compared to the use of SAP parameters, input from the combination of fused OCT and SAP parameters, and from fused OCT data, significantly increased the performance of ANNs. Integrating parameters by including a priori relevant information through data fusion may improve ANN classification accuracy compared to currently available methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ajtony C, Balla Z, Somoskeoy S, Kovacs B: Relationship between Visual Field Sensitivity and Retinal Nerve Fiber Layer Thickness as Measured by Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2007, 48 (1): 258-263. 10.1167/iovs.06-0410.CrossRefPubMed Ajtony C, Balla Z, Somoskeoy S, Kovacs B: Relationship between Visual Field Sensitivity and Retinal Nerve Fiber Layer Thickness as Measured by Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2007, 48 (1): 258-263. 10.1167/iovs.06-0410.CrossRefPubMed
2.
go back to reference Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA: Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991, 109 (1): 77-83.CrossRefPubMed Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA: Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991, 109 (1): 77-83.CrossRefPubMed
3.
go back to reference Sato S, Hirooka K, Baba T, Yano I, Shiraga F: Correlation between retinal nerve fibre layer thickness and retinal sensitivity. Acta Ophthalmol Scand. 2008, 86 (6): 609-613. 10.1111/j.1600-0420.2007.01108.x.CrossRef Sato S, Hirooka K, Baba T, Yano I, Shiraga F: Correlation between retinal nerve fibre layer thickness and retinal sensitivity. Acta Ophthalmol Scand. 2008, 86 (6): 609-613. 10.1111/j.1600-0420.2007.01108.x.CrossRef
4.
go back to reference Harwerth RS, Wheat JL, Fredette MJ, Anderson DR: Linking structure and function in glaucoma. Prog Retin Eye Res. 2010, 29 (4): 249-271. 10.1016/j.preteyeres.2010.02.001.CrossRefPubMedPubMedCentral Harwerth RS, Wheat JL, Fredette MJ, Anderson DR: Linking structure and function in glaucoma. Prog Retin Eye Res. 2010, 29 (4): 249-271. 10.1016/j.preteyeres.2010.02.001.CrossRefPubMedPubMedCentral
5.
go back to reference Gardiner SK, Johnson CA, Cioffi GA: Evaluation of the Structure-Function Relationship in Glaucoma. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3712-3717. 10.1167/iovs.05-0266.CrossRefPubMed Gardiner SK, Johnson CA, Cioffi GA: Evaluation of the Structure-Function Relationship in Glaucoma. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3712-3717. 10.1167/iovs.05-0266.CrossRefPubMed
6.
go back to reference Chang R, Budenz DL: New developments in optical coherence tomography for glaucoma. Curr Opin Ophthalmol. 2008, 19 (2): 127-135. 10.1097/ICU.0b013e3282f36cdf.CrossRefPubMed Chang R, Budenz DL: New developments in optical coherence tomography for glaucoma. Curr Opin Ophthalmol. 2008, 19 (2): 127-135. 10.1097/ICU.0b013e3282f36cdf.CrossRefPubMed
7.
go back to reference Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA: Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996, 103 (11): 1889-1898.CrossRefPubMedPubMedCentral Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA: Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996, 103 (11): 1889-1898.CrossRefPubMedPubMedCentral
8.
go back to reference Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG: Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci. 2004, 45 (6): 1716-1724. 10.1167/iovs.03-0514.CrossRefPubMedPubMedCentral Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG: Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci. 2004, 45 (6): 1716-1724. 10.1167/iovs.03-0514.CrossRefPubMedPubMedCentral
9.
go back to reference Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM: Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005, 46 (7): 2440-2443. 10.1167/iovs.04-1174.CrossRefPubMed Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM: Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005, 46 (7): 2440-2443. 10.1167/iovs.04-1174.CrossRefPubMed
10.
go back to reference Bengtsson B, Olsson J, Heijl A, Rootzén H: A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997, 75 (4): 368-375.CrossRefPubMed Bengtsson B, Olsson J, Heijl A, Rootzén H: A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997, 75 (4): 368-375.CrossRefPubMed
11.
go back to reference Heijl A, Lindgren G, Olsson J: A package for statistical analysis of computerized fields. Doc Ophthalmol Proc Ser. 1987, 49: 153-168.CrossRef Heijl A, Lindgren G, Olsson J: A package for statistical analysis of computerized fields. Doc Ophthalmol Proc Ser. 1987, 49: 153-168.CrossRef
12.
go back to reference Budenz DL, Michael A, Chang RT, McSoley J, Katz J: Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology. 2005, 112 (1): 3-9. 10.1016/j.ophtha.2004.06.039.CrossRefPubMed Budenz DL, Michael A, Chang RT, McSoley J, Katz J: Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology. 2005, 112 (1): 3-9. 10.1016/j.ophtha.2004.06.039.CrossRefPubMed
13.
go back to reference Hougaard JL, Heijl A, Bengtsson B: Glaucoma detection by Stratus OCT. J Glaucoma. 2007, 16 (3): 302-306. 10.1097/IJG.0b013e318032e4d4.CrossRefPubMed Hougaard JL, Heijl A, Bengtsson B: Glaucoma detection by Stratus OCT. J Glaucoma. 2007, 16 (3): 302-306. 10.1097/IJG.0b013e318032e4d4.CrossRefPubMed
14.
go back to reference Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, Tsang MK, Tse KK, Yung WH: Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3702-3711. 10.1167/iovs.05-0490.CrossRefPubMed Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, Tsang MK, Tse KK, Yung WH: Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3702-3711. 10.1167/iovs.05-0490.CrossRefPubMed
15.
go back to reference El Beltagi TA, Bowd C, Boden C, Amini P, Sample PA, Zangwill LM, Weinreb RN: Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003, 110 (11): 2185-2191. 10.1016/S0161-6420(03)00860-1.CrossRefPubMed El Beltagi TA, Bowd C, Boden C, Amini P, Sample PA, Zangwill LM, Weinreb RN: Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003, 110 (11): 2185-2191. 10.1016/S0161-6420(03)00860-1.CrossRefPubMed
16.
go back to reference Hood DC, Kardon RH: A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007, 26 (6): 688-710. 10.1016/j.preteyeres.2007.08.001.CrossRefPubMedPubMedCentral Hood DC, Kardon RH: A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007, 26 (6): 688-710. 10.1016/j.preteyeres.2007.08.001.CrossRefPubMedPubMedCentral
17.
go back to reference Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, García-Feijoo J: Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci. 2008, 49 (7): 3018-3018. 10.1167/iovs.08-1775.CrossRefPubMed Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, García-Feijoo J: Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci. 2008, 49 (7): 3018-3018. 10.1167/iovs.08-1775.CrossRefPubMed
18.
go back to reference Turpin A, Sampson GP, McKendrick AM: Combining Ganglion Cell Topology and Data of Patients with Glaucoma to Determine a Structure-Function Map. Invest Ophthalmol Vis Sci. 2009, 50 (7): 3249-3256. 10.1167/iovs.08-2492.CrossRefPubMed Turpin A, Sampson GP, McKendrick AM: Combining Ganglion Cell Topology and Data of Patients with Glaucoma to Determine a Structure-Function Map. Invest Ophthalmol Vis Sci. 2009, 50 (7): 3249-3256. 10.1167/iovs.08-2492.CrossRefPubMed
19.
go back to reference Zhu H, Crabb DP, Schlottmann PG, Lemij HG, Reus NJ, Healey PR, Mitchell P, Ho T, Garway-Heath DF: Predicting Visual Function from the Measurements of Retinal Nerve Fiber Layer Structure. Invest Ophthalmol Vis Sci. 2010, 51 (11): 5657-5666. 10.1167/iovs.10-5239.CrossRefPubMed Zhu H, Crabb DP, Schlottmann PG, Lemij HG, Reus NJ, Healey PR, Mitchell P, Ho T, Garway-Heath DF: Predicting Visual Function from the Measurements of Retinal Nerve Fiber Layer Structure. Invest Ophthalmol Vis Sci. 2010, 51 (11): 5657-5666. 10.1167/iovs.10-5239.CrossRefPubMed
20.
go back to reference Bowd C, Goldbaum MH: Machine learning classifiers in glaucoma. Optom Vis Sci. 2008, 85 (6): 396-396. 10.1097/OPX.0b013e3181783ab6.CrossRefPubMed Bowd C, Goldbaum MH: Machine learning classifiers in glaucoma. Optom Vis Sci. 2008, 85 (6): 396-396. 10.1097/OPX.0b013e3181783ab6.CrossRefPubMed
21.
go back to reference Bengtsson B, Bizios D, Heijl A: Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3730-3736. 10.1167/iovs.05-0175.CrossRefPubMed Bengtsson B, Bizios D, Heijl A: Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3730-3736. 10.1167/iovs.05-0175.CrossRefPubMed
22.
go back to reference Bizios D, Heijl A, Bengtsson B: Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. J Glaucoma. 2007, 16 (1): 20-28. 10.1097/IJG.0b013e31802b34e4.CrossRefPubMed Bizios D, Heijl A, Bengtsson B: Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. J Glaucoma. 2007, 16 (1): 20-28. 10.1097/IJG.0b013e31802b34e4.CrossRefPubMed
23.
go back to reference Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ: Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng. 2002, 49 (9): 963-974. 10.1109/TBME.2002.802012.CrossRefPubMed Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ: Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng. 2002, 49 (9): 963-974. 10.1109/TBME.2002.802012.CrossRefPubMed
24.
go back to reference Goldbaum MH, Sample PA, Chan K, Williams J, Lee TW, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, et al: Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci. 2002, 43 (1): 162-169.PubMed Goldbaum MH, Sample PA, Chan K, Williams J, Lee TW, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, et al: Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci. 2002, 43 (1): 162-169.PubMed
25.
go back to reference Bizios D, Heijl A, Hougaard JL, Bengtsson B: Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol Scand. 2010, 88 (1): 44-52. 10.1111/j.1755-3768.2009.01784.x.CrossRef Bizios D, Heijl A, Hougaard JL, Bengtsson B: Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol Scand. 2010, 88 (1): 44-52. 10.1111/j.1755-3768.2009.01784.x.CrossRef
26.
go back to reference Burgansky-Eliash Z, Wollstein G, Chu T, Ramsey JD, Glymour C, Noecker RJ, Ishikawa H, Schuman JS: Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci. 2005, 46 (11): 4147-4152. 10.1167/iovs.05-0366.CrossRefPubMedPubMedCentral Burgansky-Eliash Z, Wollstein G, Chu T, Ramsey JD, Glymour C, Noecker RJ, Ishikawa H, Schuman JS: Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci. 2005, 46 (11): 4147-4152. 10.1167/iovs.05-0366.CrossRefPubMedPubMedCentral
27.
go back to reference Huang ML, Chen HY: Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005, 46 (11): 4121-4129. 10.1167/iovs.05-0069.CrossRefPubMed Huang ML, Chen HY: Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005, 46 (11): 4121-4129. 10.1167/iovs.05-0069.CrossRefPubMed
28.
go back to reference Poinoosawmy D, Tan JC, Bunce C, Hitchings RA: The ability of the GDx nerve fibre analyser neural network to diagnose glaucoma. Graefes Arch Clin Exp Ophthalmol. 2001, 239 (2): 122-127. 10.1007/s004170100256.CrossRefPubMed Poinoosawmy D, Tan JC, Bunce C, Hitchings RA: The ability of the GDx nerve fibre analyser neural network to diagnose glaucoma. Graefes Arch Clin Exp Ophthalmol. 2001, 239 (2): 122-127. 10.1007/s004170100256.CrossRefPubMed
29.
go back to reference Sample PA, Boden C, Zhang Z, Pascual J, Lee TW, Zangwill LM, Weinreb RN, Crowston JG, Hoffmann EM, Medeiros FA, et al: Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3684-3692. 10.1167/iovs.04-1168.CrossRefPubMedPubMedCentral Sample PA, Boden C, Zhang Z, Pascual J, Lee TW, Zangwill LM, Weinreb RN, Crowston JG, Hoffmann EM, Medeiros FA, et al: Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005, 46 (10): 3684-3692. 10.1167/iovs.04-1168.CrossRefPubMedPubMedCentral
30.
go back to reference Tucker A, Vinciotti V, Liu X, Garway-Heath D: A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med. 2005, 34 (2): 163-177. 10.1016/j.artmed.2004.07.004.CrossRefPubMed Tucker A, Vinciotti V, Liu X, Garway-Heath D: A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med. 2005, 34 (2): 163-177. 10.1016/j.artmed.2004.07.004.CrossRefPubMed
31.
go back to reference Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW, Sejnowski TJ, Weinreb RN: Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci. 2002, 43 (11): 3444-3454.PubMed Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW, Sejnowski TJ, Weinreb RN: Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci. 2002, 43 (11): 3444-3454.PubMed
32.
go back to reference Goldbaum MH, Sample PA, White H, et al: Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 1994, 35: 3362-3373.PubMed Goldbaum MH, Sample PA, White H, et al: Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 1994, 35: 3362-3373.PubMed
33.
go back to reference Boland MV, Quigley HA: Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis. BMC ophthalmology. 2011, 11 (1): 6-6. 10.1186/1471-2415-11-6.CrossRefPubMedPubMedCentral Boland MV, Quigley HA: Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis. BMC ophthalmology. 2011, 11 (1): 6-6. 10.1186/1471-2415-11-6.CrossRefPubMedPubMedCentral
34.
go back to reference Horn FK, Mardin CY, Bendschneider D, Junemann AG, Adler W, Tornow RP: Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye. 2011, 25 (1): 17-29. 10.1038/eye.2010.155.CrossRefPubMed Horn FK, Mardin CY, Bendschneider D, Junemann AG, Adler W, Tornow RP: Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye. 2011, 25 (1): 17-29. 10.1038/eye.2010.155.CrossRefPubMed
35.
go back to reference Bowd C, Hao J, Tavares IM, Medeiros FA, Zangwill LM, Lee TW, Sample PA, Weinreb RN, Goldbaum MH: Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008, 49 (3): 945-945. 10.1167/iovs.07-1083.CrossRefPubMed Bowd C, Hao J, Tavares IM, Medeiros FA, Zangwill LM, Lee TW, Sample PA, Weinreb RN, Goldbaum MH: Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008, 49 (3): 945-945. 10.1167/iovs.07-1083.CrossRefPubMed
36.
go back to reference Racette L, Chiou CY, Hao J, Bowd C, Goldbaum MH, Zangwill LM, Lee TW, Weinreb RN, Sample PA: Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers. J Glaucoma. 2010, 19 (3): 167-167. 10.1097/IJG.0b013e3181a98b85.CrossRefPubMedPubMedCentral Racette L, Chiou CY, Hao J, Bowd C, Goldbaum MH, Zangwill LM, Lee TW, Weinreb RN, Sample PA: Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers. J Glaucoma. 2010, 19 (3): 167-167. 10.1097/IJG.0b013e3181a98b85.CrossRefPubMedPubMedCentral
37.
go back to reference Hougaard JL, Ostenfeld C, Heijl A, Bengtsson B: Modelling the normal retinal nerve fibre layer thickness as measured by Stratus optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2006, 244 (12): 1607-1614. 10.1007/s00417-006-0372-9.CrossRefPubMed Hougaard JL, Ostenfeld C, Heijl A, Bengtsson B: Modelling the normal retinal nerve fibre layer thickness as measured by Stratus optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2006, 244 (12): 1607-1614. 10.1007/s00417-006-0372-9.CrossRefPubMed
38.
go back to reference Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA: Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000, 107 (10): 1809-1815. 10.1016/S0161-6420(00)00284-0.CrossRefPubMed Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA: Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000, 107 (10): 1809-1815. 10.1016/S0161-6420(00)00284-0.CrossRefPubMed
39.
go back to reference Asman P, Heijl A: Glaucoma Hemifield Test: Automated Visual Field Evaluation. Arch Ophthalmol. 1992, 110 (6): 812-819.CrossRefPubMed Asman P, Heijl A: Glaucoma Hemifield Test: Automated Visual Field Evaluation. Arch Ophthalmol. 1992, 110 (6): 812-819.CrossRefPubMed
40.
go back to reference Møller MF: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks. 1993, 6: 525-533. 10.1016/S0893-6080(05)80056-5.CrossRef Møller MF: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks. 1993, 6: 525-533. 10.1016/S0893-6080(05)80056-5.CrossRef
41.
go back to reference Haykin SS: Neural networks: a comprehensive foundation. 1999, Upper Saddle River, N.J.: Prentice Hall, 2 Haykin SS: Neural networks: a comprehensive foundation. 1999, Upper Saddle River, N.J.: Prentice Hall, 2
42.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, 44 (3): 837-845. 10.2307/2531595.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, 44 (3): 837-845. 10.2307/2531595.CrossRefPubMed
43.
go back to reference Arthur SN, Aldridge AJ, León-Ortega JD, McGwin G, Xie A, Girkin CA: Agreement in Assessing Cup-to-Disc Ratio Measurement Among Stereoscopic Optic Nerve Head Photographs, HRT II, and Stratus OCT. J Glaucoma. 2006, 15 (3): 183-189. 10.1097/01.ijg.0000212216.19804.ee.CrossRefPubMedPubMedCentral Arthur SN, Aldridge AJ, León-Ortega JD, McGwin G, Xie A, Girkin CA: Agreement in Assessing Cup-to-Disc Ratio Measurement Among Stereoscopic Optic Nerve Head Photographs, HRT II, and Stratus OCT. J Glaucoma. 2006, 15 (3): 183-189. 10.1097/01.ijg.0000212216.19804.ee.CrossRefPubMedPubMedCentral
Metadata
Title
Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics
Authors
Dimitrios Bizios
Anders Heijl
Boel Bengtsson
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2011
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/1471-2415-11-20

Other articles of this Issue 1/2011

BMC Ophthalmology 1/2011 Go to the issue