Skip to main content
Top
Published in: BMC Cancer 1/2009

Open Access 01-12-2009 | Research article

Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors

Authors: Kunzang Chosdol, Anjan Misra, Sachin Puri, Tapasya Srivastava, Parthaprasad Chattopadhyay, Chitra Sarkar, Ashok K Mahapatra, Subrata Sinha

Published in: BMC Cancer | Issue 1/2009

Login to get access

Abstract

Background

We had earlier used the comparison of RAPD (Random Amplification of Polymorphic DNA) DNA fingerprinting profiles of tumor and corresponding normal DNA to identify genetic alterations in primary human glial tumors. This has the advantage that DNA fingerprinting identifies the genetic alterations in a manner not biased for locus.

Methods

In this study we used RAPD-PCR to identify novel genomic alterations in the astrocytic tumors of WHO grade II (Low Grade Diffuse Astrocytoma) and WHO Grade IV (Glioblastoma Multiforme). Loss of heterozygosity (LOH) of the altered region was studied by microsatellite and Single Nucleotide Polymorphism (SNP) markers. Expression study of the gene identified at the altered locus was done by semi-quantitative reverse-transcriptase-PCR (RT-PCR).

Results

Bands consistently altered in the RAPD profile of tumor DNA in a significant proportion of tumors were identified. One such 500 bp band, that was absent in the RAPD profile of 33% (4/12) of the grade II astrocytic tumors, was selected for further study. Its sequence corresponded with a region of FAT, a putative tumor suppressor gene initially identified in Drosophila. Fifty percent of a set of 40 tumors, both grade II and IV, were shown to have Loss of Heterozygosity (LOH) at this locus by microsatellite (intragenic) and by SNP markers. Semi-quantitative RT-PCR showed low FAT mRNA levels in a major subset of tumors.

Conclusion

These results point to a role of the FAT in astrocytic tumorigenesis and demonstrate the use of RAPD analysis in identifying specific alterations in astrocytic tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114: 97-109. 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114: 97-109. 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentral
2.
go back to reference von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 1993, 3: 19-26. 10.1111/j.1750-3639.1993.tb00721.x.CrossRefPubMed von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 1993, 3: 19-26. 10.1111/j.1750-3639.1993.tb00721.x.CrossRefPubMed
3.
go back to reference James CD, Mikkelsen T, Cavenee WK, Collins VP: Molecular genetic aspects of glial tumour evolution. Cancer Surv. 1990, 9: 631-644.PubMed James CD, Mikkelsen T, Cavenee WK, Collins VP: Molecular genetic aspects of glial tumour evolution. Cancer Surv. 1990, 9: 631-644.PubMed
4.
go back to reference Kleihues P, Cavenee WK: Tumours of the Nervous System: Pathology and Genetics. 2000, Lyon, France: IARC press, 2 Kleihues P, Cavenee WK: Tumours of the Nervous System: Pathology and Genetics. 2000, Lyon, France: IARC press, 2
5.
go back to reference Hill JR, Kuriyama N, Kuriyama H, Israel MA: Molecular genetics of brain tumors. Arch Neurol. 1999, 56: 439-441. 10.1001/archneur.56.4.439.CrossRefPubMed Hill JR, Kuriyama N, Kuriyama H, Israel MA: Molecular genetics of brain tumors. Arch Neurol. 1999, 56: 439-441. 10.1001/archneur.56.4.439.CrossRefPubMed
6.
go back to reference Ware ML, Berger MS, Binder DK: Molecular biology of glioma tumorigenesis. Histol Histopathol. 2003, 18: 207-216.PubMed Ware ML, Berger MS, Binder DK: Molecular biology of glioma tumorigenesis. Histol Histopathol. 2003, 18: 207-216.PubMed
7.
go back to reference Sanson M, Thillet J, Hoang-Xuan K: Molecular changes in gliomas. Curr Opin Oncol. 2004, 16: 607-613. 10.1097/01.cco.0000142485.81849.cc.CrossRefPubMed Sanson M, Thillet J, Hoang-Xuan K: Molecular changes in gliomas. Curr Opin Oncol. 2004, 16: 607-613. 10.1097/01.cco.0000142485.81849.cc.CrossRefPubMed
8.
go back to reference Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18: 6531-6535. 10.1093/nar/18.22.6531.CrossRefPubMedPubMedCentral Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18: 6531-6535. 10.1093/nar/18.22.6531.CrossRefPubMedPubMedCentral
9.
go back to reference Joshi AR, Sinha S, Dil A, Sulaiman IM, Banerji AK, Hasnain SE: Alterations in brain tumor DNA detected by a fingerprinting probe. Indian J Biochem Biophys. 1996, 33: 455-457.PubMed Joshi AR, Sinha S, Dil A, Sulaiman IM, Banerji AK, Hasnain SE: Alterations in brain tumor DNA detected by a fingerprinting probe. Indian J Biochem Biophys. 1996, 33: 455-457.PubMed
10.
go back to reference Dil A, Misra A, Sulaiman IM, Sinha S, Sarkar C, Mahapatra AK, Hasnain SE: Genetic alterations in brain tumors identified by RAPD analysis. Gene. 1998, 206: 45-48. 10.1016/S0378-1119(97)00579-9.CrossRef Dil A, Misra A, Sulaiman IM, Sinha S, Sarkar C, Mahapatra AK, Hasnain SE: Genetic alterations in brain tumors identified by RAPD analysis. Gene. 1998, 206: 45-48. 10.1016/S0378-1119(97)00579-9.CrossRef
11.
go back to reference Misra A, Chattopadhyay P, Dinda AK, Sarkar C, Mahapatra AK, Hasnain SE, Sinha S: Extensive intra-tumor heterogeneity in primary human glial tumors as a result of locus non-specific genomic alterations. J Neurooncol. 2000, 48: 1-12. 10.1023/A:1006435201961.CrossRefPubMed Misra A, Chattopadhyay P, Dinda AK, Sarkar C, Mahapatra AK, Hasnain SE, Sinha S: Extensive intra-tumor heterogeneity in primary human glial tumors as a result of locus non-specific genomic alterations. J Neurooncol. 2000, 48: 1-12. 10.1023/A:1006435201961.CrossRefPubMed
12.
go back to reference Jotwani G, Misra A, Chattopadhyay P, Sarkar C, Mahapatra AK, Sinha S: Genetic heterogeneity and alterations in chromosome 9 loci in a localized region of a functional pituitary adenoma. Cancer Genet Cytogenet. 2001, 125: 41-45. 10.1016/S0165-4608(00)00356-3.CrossRefPubMed Jotwani G, Misra A, Chattopadhyay P, Sarkar C, Mahapatra AK, Sinha S: Genetic heterogeneity and alterations in chromosome 9 loci in a localized region of a functional pituitary adenoma. Cancer Genet Cytogenet. 2001, 125: 41-45. 10.1016/S0165-4608(00)00356-3.CrossRefPubMed
13.
go back to reference Misra A, Chattopadhyay P, Chosdol K, Sarkar C, Mahapatra AK, Sinha S: Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis. BMC Cancer. 2007, 7: 190-10.1186/1471-2407-7-190.CrossRefPubMedPubMedCentral Misra A, Chattopadhyay P, Chosdol K, Sarkar C, Mahapatra AK, Sinha S: Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis. BMC Cancer. 2007, 7: 190-10.1186/1471-2407-7-190.CrossRefPubMedPubMedCentral
14.
go back to reference Misra A, Chosdol K, Sarkar C, Mahapatra AK, Sinha S: Alteration of a sequence with homology to human endogenous retrovirus (HERV-K) in primary human glioma: implications for viral repeat mediated rearrangement. Mutat Res. 2001, 484: 53-59.CrossRefPubMed Misra A, Chosdol K, Sarkar C, Mahapatra AK, Sinha S: Alteration of a sequence with homology to human endogenous retrovirus (HERV-K) in primary human glioma: implications for viral repeat mediated rearrangement. Mutat Res. 2001, 484: 53-59.CrossRefPubMed
15.
go back to reference Srivastava T, Seth A, Datta K, Chosdol K, Chattopadhyay P, Sinha S: Inter-alu PCR detects high frequency of genetic alterations in glioma cells exposed to sub-lethal cisplatin. Int J Cancer. 2005, 117: 683-689. 10.1002/ijc.21057.CrossRefPubMed Srivastava T, Seth A, Datta K, Chosdol K, Chattopadhyay P, Sinha S: Inter-alu PCR detects high frequency of genetic alterations in glioma cells exposed to sub-lethal cisplatin. Int J Cancer. 2005, 117: 683-689. 10.1002/ijc.21057.CrossRefPubMed
16.
go back to reference Srivastava T, Chosdol K, Chattopadhayay P, Sarkar C, Mahapatra AK, Sinha S: Frequent loss of heterozygosity encompassing the hMLH1 locus in low grade astrocytic tumors. J Neurooncol. 2007, 81: 249-255. 10.1007/s11060-006-9230-1.CrossRefPubMed Srivastava T, Chosdol K, Chattopadhayay P, Sarkar C, Mahapatra AK, Sinha S: Frequent loss of heterozygosity encompassing the hMLH1 locus in low grade astrocytic tumors. J Neurooncol. 2007, 81: 249-255. 10.1007/s11060-006-9230-1.CrossRefPubMed
17.
go back to reference Puri S, Joshi BH, Sarkar C, Mahapatra AK, Hussain E, Sinha S: Expression and structure of interleukin 4 receptors in primary meningeal tumors. Cancer. 2005, 103: 2132-2142. 10.1002/cncr.21008.CrossRefPubMed Puri S, Joshi BH, Sarkar C, Mahapatra AK, Hussain E, Sinha S: Expression and structure of interleukin 4 receptors in primary meningeal tumors. Cancer. 2005, 103: 2132-2142. 10.1002/cncr.21008.CrossRefPubMed
18.
go back to reference McClelland M, Mathieu-Daude F, Welsh J: RNA fingerprinting and differential display using arbitrarily primed PCR. Trends Genet. 1995, 11: 242-246. 10.1016/S0168-9525(00)89058-7.CrossRefPubMed McClelland M, Mathieu-Daude F, Welsh J: RNA fingerprinting and differential display using arbitrarily primed PCR. Trends Genet. 1995, 11: 242-246. 10.1016/S0168-9525(00)89058-7.CrossRefPubMed
19.
go back to reference Micheli MR, Bova R, Calissano P, D'Ambrosio E: Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers. Biotechniques. 1993, 15: 388-390.PubMed Micheli MR, Bova R, Calissano P, D'Ambrosio E: Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers. Biotechniques. 1993, 15: 388-390.PubMed
20.
go back to reference Papadopoulos S, Benter T, Anastassiou G, Pape M, Gerhard S, Bornfeld N, Ludwig WD, Dorken B: Assessment of genomic instability in breast cancer and uveal melanoma by random amplified polymorphic DNA analysis. Int J Cancer. 2002, 99: 193-200. 10.1002/ijc.10297.CrossRefPubMed Papadopoulos S, Benter T, Anastassiou G, Pape M, Gerhard S, Bornfeld N, Ludwig WD, Dorken B: Assessment of genomic instability in breast cancer and uveal melanoma by random amplified polymorphic DNA analysis. Int J Cancer. 2002, 99: 193-200. 10.1002/ijc.10297.CrossRefPubMed
21.
go back to reference Xian ZH, Cong WM, Zhang SH, Wu MC: Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment. World J Gastroenterol. 2005, 11: 4102-4107.CrossRefPubMedPubMedCentral Xian ZH, Cong WM, Zhang SH, Wu MC: Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment. World J Gastroenterol. 2005, 11: 4102-4107.CrossRefPubMedPubMedCentral
22.
go back to reference Garnis C, Coe BP, Ishkanian A, Zhang L, Rosin MP, Lam WL: Novel regions of amplification on 8q distinct from the MYC locus and frequently altered in oral dysplasia and cancer. Genes Chromosomes Cancer. 2004, 39: 93-98. 10.1002/gcc.10294.CrossRefPubMed Garnis C, Coe BP, Ishkanian A, Zhang L, Rosin MP, Lam WL: Novel regions of amplification on 8q distinct from the MYC locus and frequently altered in oral dysplasia and cancer. Genes Chromosomes Cancer. 2004, 39: 93-98. 10.1002/gcc.10294.CrossRefPubMed
23.
go back to reference Schweder ME, Shatters RG, West SH, Smith RL: Effect of transition interval between melting and annealing temperatures on RAPD analyses. Biotechniques. 1995, 19 (1): 38-40-2.PubMed Schweder ME, Shatters RG, West SH, Smith RL: Effect of transition interval between melting and annealing temperatures on RAPD analyses. Biotechniques. 1995, 19 (1): 38-40-2.PubMed
24.
go back to reference Hata N, Yoshimoto K, Yokoyama N, Mizoguchi M, Shono T, Guan Y, Tahira T, Kukita Y, Higasa K, Nagata S, Iwaki T, Sasaki T, Hayashi K: Allelic losses of chromosome 10 in glioma tissues detected by quantitative single-strand conformation polymorphism analysis. Clin Chem. 2006, 52: 370-378. 10.1373/clinchem.2005.060954.CrossRefPubMed Hata N, Yoshimoto K, Yokoyama N, Mizoguchi M, Shono T, Guan Y, Tahira T, Kukita Y, Higasa K, Nagata S, Iwaki T, Sasaki T, Hayashi K: Allelic losses of chromosome 10 in glioma tissues detected by quantitative single-strand conformation polymorphism analysis. Clin Chem. 2006, 52: 370-378. 10.1373/clinchem.2005.060954.CrossRefPubMed
25.
go back to reference Malmer B, Feychting M, Lonn S, Ahlbom A, Henriksson R: p53 Genotypes and risk of glioma and meningioma. Cancer Epidemiol Biomarkers Prev. 2005, 14: 2220-2223. 10.1158/1055-9965.EPI-05-0234.CrossRefPubMed Malmer B, Feychting M, Lonn S, Ahlbom A, Henriksson R: p53 Genotypes and risk of glioma and meningioma. Cancer Epidemiol Biomarkers Prev. 2005, 14: 2220-2223. 10.1158/1055-9965.EPI-05-0234.CrossRefPubMed
26.
go back to reference Hu J, Jiang C, Ng HK, Pang JC, Tong CY: Chromosome 14q may harbor multiple tumor suppressor genes in primary glioblastoma multiforme. Chin Med J (Engl). 2002, 115: 1201-1204. Hu J, Jiang C, Ng HK, Pang JC, Tong CY: Chromosome 14q may harbor multiple tumor suppressor genes in primary glioblastoma multiforme. Chin Med J (Engl). 2002, 115: 1201-1204.
27.
go back to reference Cho ES, Chang J, Chung KY, Shin DH, Kim YS, Kim SK: Identification of tumor suppressor loci on the long arm of chromosome 4 in primary small cell lung cancers. Yonsei Med J. 2002, 43: 145-151.CrossRefPubMed Cho ES, Chang J, Chung KY, Shin DH, Kim YS, Kim SK: Identification of tumor suppressor loci on the long arm of chromosome 4 in primary small cell lung cancers. Yonsei Med J. 2002, 43: 145-151.CrossRefPubMed
28.
go back to reference Zhang SH, Cong WM, Xian ZH, Wu MC: Clinicopathological significance of loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in China. World J Gastroenterol. 2005, 11: 3034-3039.CrossRefPubMedPubMedCentral Zhang SH, Cong WM, Xian ZH, Wu MC: Clinicopathological significance of loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in China. World J Gastroenterol. 2005, 11: 3034-3039.CrossRefPubMedPubMedCentral
29.
go back to reference Backsch C, Rudolph B, Kuhne-Heid R, Kalscheuer V, Bartsch O, Jansen L, Beer K, Meyer B, Schneider A, Durst M: A region on human chromosome 4 (q35.1-->qter) induces senescence in cell hybrids and is involved in cervical carcinogenesis. Genes Chromosomes Cancer. 2005, 43: 260-272. 10.1002/gcc.20192.CrossRefPubMed Backsch C, Rudolph B, Kuhne-Heid R, Kalscheuer V, Bartsch O, Jansen L, Beer K, Meyer B, Schneider A, Durst M: A region on human chromosome 4 (q35.1-->qter) induces senescence in cell hybrids and is involved in cervical carcinogenesis. Genes Chromosomes Cancer. 2005, 43: 260-272. 10.1002/gcc.20192.CrossRefPubMed
30.
go back to reference Chang J, Kim NG, Piao Z, Park C, Park KS, Paik YK, Lee WJ, Kim BR, Kim H: Assessment of chromosomal losses and gains in hepatocellular carcinoma. Cancer Lett. 2002, 182: 193-202. 10.1016/S0304-3835(02)00083-6.CrossRefPubMed Chang J, Kim NG, Piao Z, Park C, Park KS, Paik YK, Lee WJ, Kim BR, Kim H: Assessment of chromosomal losses and gains in hepatocellular carcinoma. Cancer Lett. 2002, 182: 193-202. 10.1016/S0304-3835(02)00083-6.CrossRefPubMed
31.
go back to reference Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T, Hamakawa H: Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene. 2007 Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T, Hamakawa H: Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene. 2007
32.
go back to reference Bryant PJ, Huettner B, Held LI, Ryerse J, Szidonya J: Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev Biol. 1988, 129: 541-554. 10.1016/0012-1606(88)90399-5.CrossRefPubMed Bryant PJ, Huettner B, Held LI, Ryerse J, Szidonya J: Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev Biol. 1988, 129: 541-554. 10.1016/0012-1606(88)90399-5.CrossRefPubMed
33.
go back to reference Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG, Da SM, Zhao Q, Beverley PC, Owen MJ: Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics. 1995, 30: 207-223. 10.1006/geno.1995.9884.CrossRefPubMed Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG, Da SM, Zhao Q, Beverley PC, Owen MJ: Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics. 1995, 30: 207-223. 10.1006/geno.1995.9884.CrossRefPubMed
34.
go back to reference Ponassi M, Jacques TS, Ciani L, ffrench Constant C: Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech Dev. 1999, 80: 207-212. 10.1016/S0925-4773(98)00217-2.CrossRefPubMed Ponassi M, Jacques TS, Ciani L, ffrench Constant C: Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech Dev. 1999, 80: 207-212. 10.1016/S0925-4773(98)00217-2.CrossRefPubMed
35.
go back to reference Cox B, Hadjantonakis AK, Collins JE, Magee AI: Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat. Dev Dyn. 2000, 217: 233-240. 10.1002/(SICI)1097-0177(200003)217:3<233::AID-DVDY1>3.0.CO;2-O.CrossRefPubMed Cox B, Hadjantonakis AK, Collins JE, Magee AI: Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat. Dev Dyn. 2000, 217: 233-240. 10.1002/(SICI)1097-0177(200003)217:3<233::AID-DVDY1>3.0.CO;2-O.CrossRefPubMed
36.
go back to reference Down M, Power M, Smith SI, Ralston K, Spanevello M, Burns GF, Boyd AW: Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr Patterns. 2005, 5: 483-490.CrossRefPubMed Down M, Power M, Smith SI, Ralston K, Spanevello M, Burns GF, Boyd AW: Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr Patterns. 2005, 5: 483-490.CrossRefPubMed
37.
go back to reference Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W, Holzman LB: Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. Embo J. 2004, 23: 3769-3779. 10.1038/sj.emboj.7600380.CrossRefPubMedPubMedCentral Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W, Holzman LB: Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. Embo J. 2004, 23: 3769-3779. 10.1038/sj.emboj.7600380.CrossRefPubMedPubMedCentral
38.
go back to reference Tanoue T, Takeichi M: New insights into Fat cadherins. J Cell Sci. 2005, 118: 2347-2353. 10.1242/jcs.02398.CrossRefPubMed Tanoue T, Takeichi M: New insights into Fat cadherins. J Cell Sci. 2005, 118: 2347-2353. 10.1242/jcs.02398.CrossRefPubMed
39.
go back to reference Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD: Delineation of a Fat tumor suppressor pathway. Nat Genet. 2006, 38: 1142-1150. 10.1038/ng1887.CrossRefPubMed Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD: Delineation of a Fat tumor suppressor pathway. Nat Genet. 2006, 38: 1142-1150. 10.1038/ng1887.CrossRefPubMed
40.
go back to reference Bennett FC, Harvey KF: Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol. 2006, 16: 2101-2110. 10.1016/j.cub.2006.09.045.CrossRefPubMed Bennett FC, Harvey KF: Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol. 2006, 16: 2101-2110. 10.1016/j.cub.2006.09.045.CrossRefPubMed
41.
go back to reference Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007, 21: 2747-2761. 10.1101/gad.1602907.CrossRefPubMedPubMedCentral Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007, 21: 2747-2761. 10.1101/gad.1602907.CrossRefPubMedPubMedCentral
42.
go back to reference Hao Y, Chun A, Cheung K, Rashidi B, Yang X: Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008, 283: 5496-5509. 10.1074/jbc.M709037200.CrossRefPubMed Hao Y, Chun A, Cheung K, Rashidi B, Yang X: Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008, 283: 5496-5509. 10.1074/jbc.M709037200.CrossRefPubMed
43.
go back to reference Zhang J, Smolen GA, Haber DA: Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res. 2008, 68: 2789-2794. 10.1158/0008-5472.CAN-07-6205.CrossRefPubMed Zhang J, Smolen GA, Haber DA: Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res. 2008, 68: 2789-2794. 10.1158/0008-5472.CAN-07-6205.CrossRefPubMed
44.
go back to reference Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'Neill E: RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007, 27: 962-975. 10.1016/j.molcel.2007.08.008.CrossRefPubMedPubMedCentral Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'Neill E: RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007, 27: 962-975. 10.1016/j.molcel.2007.08.008.CrossRefPubMedPubMedCentral
45.
go back to reference Bendavid C, Pasquier L, Watrin T, Morcel K, Lucas J, Gicquel I, Dubourg C, Henry C, David V, Odent S, Leveque J, Pellerin I, Guerrier D: Phenotypic variability of a 4q34-->qter inherited deletion: MRKH syndrome in the daughter, cardiac defect and Fallopian tube cancer in the mother. Eur J Med Genet. 2007, 50: 66-72. 10.1016/j.ejmg.2006.09.003.CrossRefPubMed Bendavid C, Pasquier L, Watrin T, Morcel K, Lucas J, Gicquel I, Dubourg C, Henry C, David V, Odent S, Leveque J, Pellerin I, Guerrier D: Phenotypic variability of a 4q34-->qter inherited deletion: MRKH syndrome in the daughter, cardiac defect and Fallopian tube cancer in the mother. Eur J Med Genet. 2007, 50: 66-72. 10.1016/j.ejmg.2006.09.003.CrossRefPubMed
Metadata
Title
Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors
Authors
Kunzang Chosdol
Anjan Misra
Sachin Puri
Tapasya Srivastava
Parthaprasad Chattopadhyay
Chitra Sarkar
Ashok K Mahapatra
Subrata Sinha
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2009
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-5

Other articles of this Issue 1/2009

BMC Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine