Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

Authors: Kegui Tian, Yuezeng Wang, Yu Huang, Boqiao Sun, Yuxin Li, Haopeng Xu

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells.

Methods

To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter.

Results

The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity.

Conclusion

Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robinson LJ, Roberts WK, Ling TT, Lamming D, Sternberg SS, Roepe PD: Human MDR 1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry. 1997, 36 (37): 11169-11178. 10.1021/bi9627830.CrossRefPubMed Robinson LJ, Roberts WK, Ling TT, Lamming D, Sternberg SS, Roepe PD: Human MDR 1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry. 1997, 36 (37): 11169-11178. 10.1021/bi9627830.CrossRefPubMed
2.
go back to reference Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB: Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986, 47 (3): 381-389. 10.1016/0092-8674(86)90595-7.CrossRefPubMed Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB: Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986, 47 (3): 381-389. 10.1016/0092-8674(86)90595-7.CrossRefPubMed
3.
go back to reference Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG: Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992, 258 (5088): 1650-1654. 10.1126/science.1360704.CrossRefPubMed Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG: Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992, 258 (5088): 1650-1654. 10.1126/science.1360704.CrossRefPubMed
4.
go back to reference Gros P, Ben Neriah YB, Croop JM, Housman DE: Isolation and expression of a complementary DNA that confers multidrug resistance. Nature. 1986, 323 (6090): 728-731. 10.1038/323728a0.CrossRefPubMed Gros P, Ben Neriah YB, Croop JM, Housman DE: Isolation and expression of a complementary DNA that confers multidrug resistance. Nature. 1986, 323 (6090): 728-731. 10.1038/323728a0.CrossRefPubMed
5.
go back to reference Gros P, Croop J, Housman D: Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell. 1986, 47 (3): 371-380. 10.1016/0092-8674(86)90594-5.CrossRefPubMed Gros P, Croop J, Housman D: Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell. 1986, 47 (3): 371-380. 10.1016/0092-8674(86)90594-5.CrossRefPubMed
6.
go back to reference Johnstone RW, Cretney E, Smyth MJ: P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999, 93 (3): 1075-1085.PubMed Johnstone RW, Cretney E, Smyth MJ: P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999, 93 (3): 1075-1085.PubMed
7.
go back to reference Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW: The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA. 1998, 95 (12): 7024-7029. 10.1073/pnas.95.12.7024.CrossRefPubMedPubMedCentral Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW: The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA. 1998, 95 (12): 7024-7029. 10.1073/pnas.95.12.7024.CrossRefPubMedPubMedCentral
8.
go back to reference Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, Vinciguerra V, Xu HP: Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res. 1999, 59 (13): 3215-3221.PubMed Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, Vinciguerra V, Xu HP: Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res. 1999, 59 (13): 3215-3221.PubMed
9.
go back to reference Shan J, Yuan L, Budman DR, Xu HP: WTH3, a new member of the Rab6 gene family, and multidrug resistance. Biochim Biophys Acta. 2002, 1589 (2): 112-123. 10.1016/S0167-4889(02)00164-7.CrossRefPubMed Shan J, Yuan L, Budman DR, Xu HP: WTH3, a new member of the Rab6 gene family, and multidrug resistance. Biochim Biophys Acta. 2002, 1589 (2): 112-123. 10.1016/S0167-4889(02)00164-7.CrossRefPubMed
10.
go back to reference Shan J, Mason JM, Yuan L, Barcia M, Porti D, Calabro A, Budman D, Vinciguerra V, Xu H: Rab6c, a new member of the rab gene family, is involved in drug resistance in MCF7/AdrR cells. Gene. 2000, 257 (1): 67-75. 10.1016/S0378-1119(00)00395-4.CrossRefPubMed Shan J, Mason JM, Yuan L, Barcia M, Porti D, Calabro A, Budman D, Vinciguerra V, Xu H: Rab6c, a new member of the rab gene family, is involved in drug resistance in MCF7/AdrR cells. Gene. 2000, 257 (1): 67-75. 10.1016/S0378-1119(00)00395-4.CrossRefPubMed
11.
go back to reference Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B: Interaction of a Golgi-associated kinesin-like protein with Rab6. Science. 1998, 279 (5350): 580-585. 10.1126/science.279.5350.580.CrossRefPubMed Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B: Interaction of a Golgi-associated kinesin-like protein with Rab6. Science. 1998, 279 (5350): 580-585. 10.1126/science.279.5350.580.CrossRefPubMed
12.
go back to reference Echard A, Opdam FJ, de Leeuw HJ, Jollivet F, Savelkoul P, Hendriks W, Voorberg J, Goud B, Fransen JA: Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Mol Biol Cell. 2000, 11 (11): 3819-3833.CrossRefPubMedPubMedCentral Echard A, Opdam FJ, de Leeuw HJ, Jollivet F, Savelkoul P, Hendriks W, Voorberg J, Goud B, Fransen JA: Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Mol Biol Cell. 2000, 11 (11): 3819-3833.CrossRefPubMedPubMedCentral
13.
go back to reference Goud B, Zahraoui A, Tavitian A, Saraste J: Small GTP-binding protein associated with Golgi cisternae. Nature. 1990, 345 (6275): 553-556. 10.1038/345553a0.CrossRefPubMed Goud B, Zahraoui A, Tavitian A, Saraste J: Small GTP-binding protein associated with Golgi cisternae. Nature. 1990, 345 (6275): 553-556. 10.1038/345553a0.CrossRefPubMed
14.
go back to reference Zahraoui A, Touchot N, Chardin P, Tavitian A: The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem. 1989, 264 (21): 12394-12401.PubMed Zahraoui A, Touchot N, Chardin P, Tavitian A: The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem. 1989, 264 (21): 12394-12401.PubMed
15.
go back to reference Tian K, Jurukovski V, Yuan L, Shan J, Xu H: WTH3, which encodes a small G protein, is differentially regulated in multidrug-resistant and sensitive MCF7 cells. Cancer Res. 2005, 65 (16): 7421-7428. 10.1158/0008-5472.CAN-05-0658.CrossRefPubMed Tian K, Jurukovski V, Yuan L, Shan J, Xu H: WTH3, which encodes a small G protein, is differentially regulated in multidrug-resistant and sensitive MCF7 cells. Cancer Res. 2005, 65 (16): 7421-7428. 10.1158/0008-5472.CAN-05-0658.CrossRefPubMed
16.
17.
go back to reference Bird AP: CpG-rich islands and the function of DNA methylation. Nature. 1986, 321 (6067): 209-213. 10.1038/321209a0.CrossRefPubMed Bird AP: CpG-rich islands and the function of DNA methylation. Nature. 1986, 321 (6067): 209-213. 10.1038/321209a0.CrossRefPubMed
18.
19.
go back to reference Doerfler W, Kruczek I, Eick D, Vardimon L, Kron B: DNA methylation and gene activity: the adenovirus system as a model. Cold Spring Harb Symp Quant Biol. 1983, 47 (Pt 2): 593-603.CrossRefPubMed Doerfler W, Kruczek I, Eick D, Vardimon L, Kron B: DNA methylation and gene activity: the adenovirus system as a model. Cold Spring Harb Symp Quant Biol. 1983, 47 (Pt 2): 593-603.CrossRefPubMed
20.
go back to reference Doerfler W: DNA methylation and gene activity. Annu Rev Biochem. 1983, 52: 93-124. 10.1146/annurev.bi.52.070183.000521.CrossRefPubMed Doerfler W: DNA methylation and gene activity. Annu Rev Biochem. 1983, 52: 93-124. 10.1146/annurev.bi.52.070183.000521.CrossRefPubMed
21.
go back to reference Siegfried Z, Cedar H: DNA methylation: a molecular lock. Curr Biol. 1997, 7 (5): R305-307. 10.1016/S0960-9822(06)00144-8.CrossRefPubMed Siegfried Z, Cedar H: DNA methylation: a molecular lock. Curr Biol. 1997, 7 (5): R305-307. 10.1016/S0960-9822(06)00144-8.CrossRefPubMed
22.
go back to reference Kass SU, Landsberger N, Wolffe AP: DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol. 1997, 7 (3): 157-165. 10.1016/S0960-9822(97)70086-1.CrossRefPubMed Kass SU, Landsberger N, Wolffe AP: DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol. 1997, 7 (3): 157-165. 10.1016/S0960-9822(97)70086-1.CrossRefPubMed
23.
go back to reference Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H: Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res. 2005, 65 (21): 10024-10031. 10.1158/0008-5472.CAN-05-1944.CrossRefPubMed Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H: Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res. 2005, 65 (21): 10024-10031. 10.1158/0008-5472.CAN-05-1944.CrossRefPubMed
25.
go back to reference Lowe SW: Cancer therapy and p53. Curr Opin Oncol. 1995, 7 (6): 547-553. 10.1097/00001622-199511000-00013.CrossRefPubMed Lowe SW: Cancer therapy and p53. Curr Opin Oncol. 1995, 7 (6): 547-553. 10.1097/00001622-199511000-00013.CrossRefPubMed
26.
go back to reference Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE: Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996, 2 (7): 811-814. 10.1038/nm0796-811.CrossRefPubMed Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE: Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996, 2 (7): 811-814. 10.1038/nm0796-811.CrossRefPubMed
27.
go back to reference Righetti SC, Della Torre G, Pilotti S, Menard S, Ottone F, Colnaghi MI, Pierotti MA, Lavarino C, Cornarotti M, Oriana S, et al: A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 1996, 56 (4): 689-693.PubMed Righetti SC, Della Torre G, Pilotti S, Menard S, Ottone F, Colnaghi MI, Pierotti MA, Lavarino C, Cornarotti M, Oriana S, et al: A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 1996, 56 (4): 689-693.PubMed
28.
go back to reference Schmitt CA, Lowe SW: Apoptosis and therapy. J Pathol. 1999, 187 (1): 127-137. 10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-T.CrossRefPubMed Schmitt CA, Lowe SW: Apoptosis and therapy. J Pathol. 1999, 187 (1): 127-137. 10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-T.CrossRefPubMed
29.
go back to reference Kim R: Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. 2005, 103 (8): 1551-1560. 10.1002/cncr.20947.CrossRefPubMed Kim R: Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. 2005, 103 (8): 1551-1560. 10.1002/cncr.20947.CrossRefPubMed
30.
go back to reference Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004, 23 (16): 2934-2949. 10.1038/sj.onc.1207515.CrossRefPubMed Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004, 23 (16): 2934-2949. 10.1038/sj.onc.1207515.CrossRefPubMed
31.
go back to reference Norbury CJ, Zhivotovsky B: DNA damage-induced apoptosis. Oncogene. 2004, 23 (16): 2797-2808. 10.1038/sj.onc.1207532.CrossRefPubMed Norbury CJ, Zhivotovsky B: DNA damage-induced apoptosis. Oncogene. 2004, 23 (16): 2797-2808. 10.1038/sj.onc.1207532.CrossRefPubMed
32.
go back to reference Ogretmen B, Safa AR: Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene. 1997, 14 (4): 499-506. 10.1038/sj.onc.1200855.CrossRefPubMed Ogretmen B, Safa AR: Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene. 1997, 14 (4): 499-506. 10.1038/sj.onc.1200855.CrossRefPubMed
33.
go back to reference Smith ND, Rubenstein JN, Eggener SE, Kozlowski JM: The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003, 169 (4): 1219-1228. 10.1097/01.ju.0000056085.58221.80.CrossRefPubMed Smith ND, Rubenstein JN, Eggener SE, Kozlowski JM: The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003, 169 (4): 1219-1228. 10.1097/01.ju.0000056085.58221.80.CrossRefPubMed
34.
go back to reference Steele RJ, Lane DP: P53 in cancer: a paradigm for modern management of cancer. Surgeon. 2005, 3 (3): 197-205.CrossRefPubMed Steele RJ, Lane DP: P53 in cancer: a paradigm for modern management of cancer. Surgeon. 2005, 3 (3): 197-205.CrossRefPubMed
35.
go back to reference Xu H, Shan J, Jurukovski V, Yuan L, Li J, Tian K: TSP50 encodes a testis-specific protease and is negatively regulated by p53. Cancer Res. 2007, 67 (3): 1239-1245. 10.1158/0008-5472.CAN-06-3688.CrossRefPubMed Xu H, Shan J, Jurukovski V, Yuan L, Li J, Tian K: TSP50 encodes a testis-specific protease and is negatively regulated by p53. Cancer Res. 2007, 67 (3): 1239-1245. 10.1158/0008-5472.CAN-06-3688.CrossRefPubMed
36.
go back to reference Johnson RA, Shepard EM, Scotto KW: Differential regulation of MDR1 transcription by the p53 family members. Role of the DNA binding domain. J Biol Chem. 2005, 280 (14): 13213-13219. 10.1074/jbc.M414646200.CrossRefPubMed Johnson RA, Shepard EM, Scotto KW: Differential regulation of MDR1 transcription by the p53 family members. Role of the DNA binding domain. J Biol Chem. 2005, 280 (14): 13213-13219. 10.1074/jbc.M414646200.CrossRefPubMed
37.
go back to reference Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999, 104 (3): 263-269. 10.1172/JCI6863.CrossRefPubMedPubMedCentral Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999, 104 (3): 263-269. 10.1172/JCI6863.CrossRefPubMedPubMedCentral
38.
go back to reference Bartke T, Siegmund D, Peters N, Reichwein M, Henkler F, Scheurich P, Wajant H: p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene. 2001, 20 (5): 571-580. 10.1038/sj.onc.1204124.CrossRefPubMed Bartke T, Siegmund D, Peters N, Reichwein M, Henkler F, Scheurich P, Wajant H: p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene. 2001, 20 (5): 571-580. 10.1038/sj.onc.1204124.CrossRefPubMed
39.
Metadata
Title
Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression
Authors
Kegui Tian
Yuezeng Wang
Yu Huang
Boqiao Sun
Yuxin Li
Haopeng Xu
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-327

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine