Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro

Authors: Qiang Huang, Quan-Bin Zhang, Jun Dong, Yin-Yan Wu, Yun-Tian Shen, Yao-Dong Zhao, Yu-De Zhu, Yi Diao, Ai-Dong Wang, Qing Lan

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs) may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines.

Methods

In the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC) lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR.

Results

Two GSPC lines, SU-1 (primary) and SU-2 (recurrent), were maintained in vitro for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural stem cells. The differentiation of most of the tumor cells seemed to be blocked at the progenitor cell phase: most of them expressed nestin but only a few co-expressed differentiation markers. Transmission electron microscopy showed that GSCs were at a primitive stage of differentiation with low autophagic activity. Array-based comparative genomic hybridization revealed genetic alterations common to both SU-1 and SU-2, including amplification of the oncogene EGFR and deletion of the tumor suppressor PTEN, while some genetic alterations such as amplification of MTA1 (metastasis associated gene 1) only occurred in SU-2.

Conclusion

The GSPC lines SU-1 and SU-2 faithfully retained the characteristics of their original tumors and provide a reliable resource for investigating the mechanisms of formation and recurrence of human gliomas with progressive malignancy. Such investigations may eventually have major impacts on the understanding and treatment of gliomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003, 63 (18): 5821-8.PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003, 63 (18): 5821-8.PubMed
2.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414 (6859): 105-11. 10.1038/35102167.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414 (6859): 105-11. 10.1038/35102167.CrossRefPubMed
3.
go back to reference Gilbertson RJ: Brain tumors provide new clues to the source of cancer stem cells: does oncology recapitulate ontogeny?. Cell Cycle. 2006, 5 (2): 135-7.CrossRefPubMed Gilbertson RJ: Brain tumors provide new clues to the source of cancer stem cells: does oncology recapitulate ontogeny?. Cell Cycle. 2006, 5 (2): 135-7.CrossRefPubMed
4.
go back to reference Galderisi U, Cipollaro M, Giordano A: Stem cells and brain cancer. Cell Death Differ. 2006, 13 (1): 5-11. 10.1038/sj.cdd.4401757.CrossRefPubMed Galderisi U, Cipollaro M, Giordano A: Stem cells and brain cancer. Cell Death Differ. 2006, 13 (1): 5-11. 10.1038/sj.cdd.4401757.CrossRefPubMed
5.
go back to reference Sanai N, Alvarez-Buylla A, Berger MS: Neural stem cells and the origin of gliomas. N Engl J Med. 2005, 353 (8): 811-22. 10.1056/NEJMra043666.CrossRefPubMed Sanai N, Alvarez-Buylla A, Berger MS: Neural stem cells and the origin of gliomas. N Engl J Med. 2005, 353 (8): 811-22. 10.1056/NEJMra043666.CrossRefPubMed
6.
go back to reference Vescovi AL, Galli R, Reynolds BA: Brain tumor stem cells. Nat Rev Cancer. 2006, 6 (6): 425-36. 10.1038/nrc1889.CrossRefPubMed Vescovi AL, Galli R, Reynolds BA: Brain tumor stem cells. Nat Rev Cancer. 2006, 6 (6): 425-36. 10.1038/nrc1889.CrossRefPubMed
7.
go back to reference Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002, 39 (3): 193-206. 10.1002/glia.10094.CrossRefPubMed Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002, 39 (3): 193-206. 10.1002/glia.10094.CrossRefPubMed
8.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumor initiating cells. Nature. 2004, 432 (7015): 396-401. 10.1038/nature03128.CrossRefPubMed Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumor initiating cells. Nature. 2004, 432 (7015): 396-401. 10.1038/nature03128.CrossRefPubMed
9.
go back to reference Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic stem-like neural precursors from human glioblastoma. Cancer Res. 2004, 64 (19): 7011-21. 10.1158/0008-5472.CAN-04-1364.CrossRefPubMed Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic stem-like neural precursors from human glioblastoma. Cancer Res. 2004, 64 (19): 7011-21. 10.1158/0008-5472.CAN-04-1364.CrossRefPubMed
10.
go back to reference Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 2004, 101 (3): 781-6. 10.1073/pnas.0307618100.CrossRefPubMedPubMedCentral Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 2004, 101 (3): 781-6. 10.1073/pnas.0307618100.CrossRefPubMedPubMedCentral
11.
go back to reference Fomchenko EI, Holland EC: Stem cell and brain cancer. Exp Cell Res. 2005, 306 (2): 323-9. 10.1016/j.yexcr.2005.03.007.CrossRefPubMed Fomchenko EI, Holland EC: Stem cell and brain cancer. Exp Cell Res. 2005, 306 (2): 323-9. 10.1016/j.yexcr.2005.03.007.CrossRefPubMed
12.
go back to reference Zheng X, Shen G, Yang X, Liu W: Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res. 2007, 67 (8): 3691-7. 10.1158/0008-5472.CAN-06-3912.CrossRefPubMed Zheng X, Shen G, Yang X, Liu W: Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res. 2007, 67 (8): 3691-7. 10.1158/0008-5472.CAN-06-3912.CrossRefPubMed
13.
go back to reference Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004, 23 (58): 9392-400. 10.1038/sj.onc.1208311.CrossRefPubMed Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004, 23 (58): 9392-400. 10.1038/sj.onc.1208311.CrossRefPubMed
14.
go back to reference Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003, 100 (25): 15178-83. 10.1073/pnas.2036535100.CrossRefPubMedPubMedCentral Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003, 100 (25): 15178-83. 10.1073/pnas.2036535100.CrossRefPubMedPubMedCentral
15.
go back to reference Zhang QB, Ji XY, Huang Q, Dong J, Zhu YD, Lan Q: Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res. 2006, 16 (12): 909-15. 10.1038/sj.cr.7310104.CrossRefPubMed Zhang QB, Ji XY, Huang Q, Dong J, Zhu YD, Lan Q: Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res. 2006, 16 (12): 909-15. 10.1038/sj.cr.7310104.CrossRefPubMed
16.
go back to reference Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992, 255 (5052): 1707-10. 10.1126/science.1553558.CrossRefPubMed Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992, 255 (5052): 1707-10. 10.1126/science.1553558.CrossRefPubMed
17.
go back to reference Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S, Ladanyi M, Gorlick R, Lau CC, Rao PH: Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer. 2004, 4: 45-54. 10.1186/1471-2407-4-45.CrossRefPubMedPubMedCentral Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S, Ladanyi M, Gorlick R, Lau CC, Rao PH: Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer. 2004, 4: 45-54. 10.1186/1471-2407-4-45.CrossRefPubMedPubMedCentral
18.
go back to reference Inagaki A, Soeda A, Oka N, Kitajima H, Nakagawa J, Motohashi T, Kunisada T, Iwama T: Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions. Biochem Biophys Res Commun. 2007, 361 (3): 586-92. 10.1016/j.bbrc.2007.07.037.CrossRefPubMed Inagaki A, Soeda A, Oka N, Kitajima H, Nakagawa J, Motohashi T, Kunisada T, Iwama T: Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions. Biochem Biophys Res Commun. 2007, 361 (3): 586-92. 10.1016/j.bbrc.2007.07.037.CrossRefPubMed
19.
go back to reference Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K: Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008, 27 (20): 2897-909. 10.1038/sj.onc.1210949.CrossRefPubMed Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K: Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008, 27 (20): 2897-909. 10.1038/sj.onc.1210949.CrossRefPubMed
20.
go back to reference Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133 (+) and CD133 (-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007, 67 (9): 4010-5. 10.1158/0008-5472.CAN-06-4180.CrossRefPubMed Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133 (+) and CD133 (-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007, 67 (9): 4010-5. 10.1158/0008-5472.CAN-06-4180.CrossRefPubMed
21.
go back to reference Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL, Schroeder MA, James CD: Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol. 2005, 7 (2): 164-76. 10.1215/S1152851704000821.CrossRefPubMedPubMedCentral Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL, Schroeder MA, James CD: Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol. 2005, 7 (2): 164-76. 10.1215/S1152851704000821.CrossRefPubMedPubMedCentral
22.
go back to reference Pandita A, Aldape KD, Zadeh G, Guha A, James CD: Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 2004, 39 (1): 29-36. 10.1002/gcc.10300.CrossRefPubMed Pandita A, Aldape KD, Zadeh G, Guha A, James CD: Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 2004, 39 (1): 29-36. 10.1002/gcc.10300.CrossRefPubMed
23.
go back to reference Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 1991, 51 (8): 2164-72.PubMed Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 1991, 51 (8): 2164-72.PubMed
24.
go back to reference Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B: Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA. 1987, 84 (19): 6899-903. 10.1073/pnas.84.19.6899.CrossRefPubMedPubMedCentral Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B: Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA. 1987, 84 (19): 6899-903. 10.1073/pnas.84.19.6899.CrossRefPubMedPubMedCentral
25.
go back to reference Nathoo N, Goldlust S, Vogelbaum MA: Epidermal growth factor receptor antagonists: novel therapy for the treatment of high-grade gliomas. Neurosurgery. 2004, 54 (6): 1480-8. 10.1227/01.NEU.0000125006.88478.F6.CrossRefPubMed Nathoo N, Goldlust S, Vogelbaum MA: Epidermal growth factor receptor antagonists: novel therapy for the treatment of high-grade gliomas. Neurosurgery. 2004, 54 (6): 1480-8. 10.1227/01.NEU.0000125006.88478.F6.CrossRefPubMed
26.
go back to reference Cappuzzo F: Erlotinib in gliomas: should selection be based on EGFR and Akt analyses?. J Natl Cancer Inst. 2005, 97 (12): 868-9.CrossRefPubMed Cappuzzo F: Erlotinib in gliomas: should selection be based on EGFR and Akt analyses?. J Natl Cancer Inst. 2005, 97 (12): 868-9.CrossRefPubMed
27.
go back to reference Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H: PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci USA. 2006, 103 (1): 111-6. 10.1073/pnas.0509939103.CrossRefPubMed Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H: PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci USA. 2006, 103 (1): 111-6. 10.1073/pnas.0509939103.CrossRefPubMed
29.
go back to reference Sansal I, Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004, 22 (14): 2954-63. 10.1200/JCO.2004.02.141.CrossRefPubMed Sansal I, Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004, 22 (14): 2954-63. 10.1200/JCO.2004.02.141.CrossRefPubMed
30.
go back to reference Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275 (5308): 1943-7. 10.1126/science.275.5308.1943.CrossRefPubMed Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275 (5308): 1943-7. 10.1126/science.275.5308.1943.CrossRefPubMed
31.
go back to reference Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, Swedlund B, Hansen KL, Vinson VL, Gumpper KL, Ellis L, El-Naggar A, Frazier M, Jasser S, Langford LA, Lee J, Mills GB, Pershouse MA, Pollack RE, Tornos C, Troncoso P, Yung WK, Fujii G, Berson A, Steck PA: MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. 1997, 57 (23): 5221-5.PubMed Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, Swedlund B, Hansen KL, Vinson VL, Gumpper KL, Ellis L, El-Naggar A, Frazier M, Jasser S, Langford LA, Lee J, Mills GB, Pershouse MA, Pollack RE, Tornos C, Troncoso P, Yung WK, Fujii G, Berson A, Steck PA: MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. 1997, 57 (23): 5221-5.PubMed
32.
go back to reference Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, van Meir EG: Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 1999, 9 (3): 469-79.CrossRefPubMed Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, van Meir EG: Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 1999, 9 (3): 469-79.CrossRefPubMed
33.
go back to reference Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004, 23 (16): 2891-906. 10.1038/sj.onc.1207521.CrossRefPubMed Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004, 23 (16): 2891-906. 10.1038/sj.onc.1207521.CrossRefPubMed
34.
go back to reference Balasenthil S, Broaddus RR, Kumar R: Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Hum Pathol. 2006, 37 (6): 656-61. 10.1016/j.humpath.2006.01.024.CrossRefPubMed Balasenthil S, Broaddus RR, Kumar R: Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Hum Pathol. 2006, 37 (6): 656-61. 10.1016/j.humpath.2006.01.024.CrossRefPubMed
35.
go back to reference Gururaj AE, Singh RR, Rayala SK, Holm C, den Hollander P, Zhang H, Balasenthil S, Talukder AH, Landberg G, Kumar R: MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc Natl Acad Sci USA. 2006, 103 (17): 6670-5. 10.1073/pnas.0601989103.CrossRefPubMedPubMedCentral Gururaj AE, Singh RR, Rayala SK, Holm C, den Hollander P, Zhang H, Balasenthil S, Talukder AH, Landberg G, Kumar R: MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc Natl Acad Sci USA. 2006, 103 (17): 6670-5. 10.1073/pnas.0601989103.CrossRefPubMedPubMedCentral
36.
go back to reference Jang KS, Paik SS, Chung H, Oh YH, Kong G: MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci. 2006, 97 (5): 374-9. 10.1111/j.1349-7006.2006.00186.x.CrossRefPubMed Jang KS, Paik SS, Chung H, Oh YH, Kong G: MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci. 2006, 97 (5): 374-9. 10.1111/j.1349-7006.2006.00186.x.CrossRefPubMed
37.
go back to reference Yi C, Li X, Xu W, Chen A: Relationship between the expression of MTA-1 gene and the metastasis and invasion in human osteosarcoma. J Huazhong Univ Sci Technolog Med Sci. 2005, 25 (4): 445-7.CrossRefPubMed Yi C, Li X, Xu W, Chen A: Relationship between the expression of MTA-1 gene and the metastasis and invasion in human osteosarcoma. J Huazhong Univ Sci Technolog Med Sci. 2005, 25 (4): 445-7.CrossRefPubMed
38.
go back to reference Hofer MD, Menke A, Genze F, Gierschik P, Giehl K: Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br J Cancer. 2004, 26;90 (2): 455-62. 10.1038/sj.bjc.6601535.CrossRef Hofer MD, Menke A, Genze F, Gierschik P, Giehl K: Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br J Cancer. 2004, 26;90 (2): 455-62. 10.1038/sj.bjc.6601535.CrossRef
39.
go back to reference Toh Y, Ohga T, Endo K, Adachi E, Kusumoto H, Haraguchi M, Okamura T, Nicolson GL: Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer. 2004, 110 (3): 362-7. 10.1002/ijc.20154.CrossRefPubMed Toh Y, Ohga T, Endo K, Adachi E, Kusumoto H, Haraguchi M, Okamura T, Nicolson GL: Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer. 2004, 110 (3): 362-7. 10.1002/ijc.20154.CrossRefPubMed
Metadata
Title
Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro
Authors
Qiang Huang
Quan-Bin Zhang
Jun Dong
Yin-Yan Wu
Yun-Tian Shen
Yao-Dong Zhao
Yu-De Zhu
Yi Diao
Ai-Dong Wang
Qing Lan
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-304

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine