Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis

Authors: Yan Shi, Ravi P Sahu, Sanjay K Srivastava

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Triphala is commonly used in Ayurvedic medicine to treat variety of diseases; however its mechanism of action remains unexplored. This study elucidates the molecular mechanism of Triphala against human pancreatic cancer in the cellular and in vivo model.

Methods

Growth-inhibitory effects of Triphala were evaluated in Capan-2, BxPC-3 and HPDE-6 cells by Sulphoradamine-B assay. Apoptosis was determined by cell death assay and western blotting. Triphala was administered orally to nude mice implanted with Capan-2 xenograft. Tumors were analyzed by immunohistochemistry and western blotting.

Results

Exposure of Capan-2 cells to the aqueous extract of Triphala for 24 h resulted in the significant decrease in the survival of cells in a dose-dependent manner with an IC50 of about 50 μg/ml. Triphala-mediated reduced cell survival correlated with induction of apoptosis, which was associated with reactive oxygen species (ROS) generation. Triphala-induced apoptosis was linked with phosphorylation of p53 at Ser-15 and ERK at Thr-202/Tyr-204 in Capan-2 cells. Above mentioned effects were significantly blocked when the cells were pretreated with an antioxidant N-acetylcysteine (NAC), suggesting the involvement of ROS generation. Pretreatment of cells with pifithrin-α or U0126, specific inhibitors of p53 or MEK-1/2, significantly attenuated Triphala-induced apoptosis. Moreover, NAC or U0126 pretreatment significantly attenuated Triphala-induced p53 transcriptional activity. Similarly, Triphala induced apoptosis in another pancreatic cancer cell line BxPC-3 by activating ERK. On the other hand, Triphala failed to induce apoptosis or activate ERK or p53 in normal human pancreatic ductal epithelial (HPDE-6) cells. Further, oral administration of 50 mg/kg or 100 mg/kg Triphala in PBS, 5 days/week significantly suppressed the growth of Capan-2 pancreatic tumor-xenograft. Reduced tumor-growth in Triphala fed mice was due to increased apoptosis in the tumors cells, which was associated with increased activation of p53 and ERK.

Conclusion

Our preclinical studies demonstrate that Triphala is effective in inhibiting the growth of human pancreatic cancer cells in both cellular and in vivo model. Our data also suggests that the growth inhibitory effects of Triphala is mediated by the activation of ERK and p53 and shows potential for the treatment and/or prevention of human pancreatic cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics, 2005. CA Cancer J Clin. 2005, 55 (1): 10-30. Erratum in: CA Cancer J Clin. 2005; 55(4):259CrossRefPubMed Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics, 2005. CA Cancer J Clin. 2005, 55 (1): 10-30. Erratum in: CA Cancer J Clin. 2005; 55(4):259CrossRefPubMed
2.
go back to reference Niederhuber JE, Brennan MF, Mench HR: The National Cancer Data Base Report on Pancreatic Cancer. Cancer. 1995, 76: 1671-7. 10.1002/1097-0142(19951101)76:9<1671::AID-CNCR2820760926>3.0.CO;2-R.CrossRefPubMed Niederhuber JE, Brennan MF, Mench HR: The National Cancer Data Base Report on Pancreatic Cancer. Cancer. 1995, 76: 1671-7. 10.1002/1097-0142(19951101)76:9<1671::AID-CNCR2820760926>3.0.CO;2-R.CrossRefPubMed
4.
go back to reference Sarkar FH, Banerjee S, Li YW: Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicol Appl Pharmacol. 2007, 224: 326-36. 10.1016/j.taap.2006.11.007.CrossRefPubMed Sarkar FH, Banerjee S, Li YW: Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicol Appl Pharmacol. 2007, 224: 326-36. 10.1016/j.taap.2006.11.007.CrossRefPubMed
5.
go back to reference Stefañska B, Arciemiuk M, Bontemps-Gracz MM, Dzieduszycka M, Kupiec A, Martelli S, Borowski E: Synthesis and biological evaluation of 2,7-Dihydro-3H-dibenzo[de,h] cinnoline-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line. Bioorg Med Chem. 2003, 11: 561-72. 10.1016/S0968-0896(02)00425-X.CrossRefPubMed Stefañska B, Arciemiuk M, Bontemps-Gracz MM, Dzieduszycka M, Kupiec A, Martelli S, Borowski E: Synthesis and biological evaluation of 2,7-Dihydro-3H-dibenzo[de,h] cinnoline-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line. Bioorg Med Chem. 2003, 11: 561-72. 10.1016/S0968-0896(02)00425-X.CrossRefPubMed
6.
go back to reference Sahani DV, Shah ZK, Catalano OA, Boland GW, Brugge WR: Radiology of pancreatic adenocarcinoma: current status of imaging. J Gastroenterol Hepatol. 2008, 23: 23-33. 10.1111/j.1440-1746.2007.04868.x.CrossRefPubMed Sahani DV, Shah ZK, Catalano OA, Boland GW, Brugge WR: Radiology of pancreatic adenocarcinoma: current status of imaging. J Gastroenterol Hepatol. 2008, 23: 23-33. 10.1111/j.1440-1746.2007.04868.x.CrossRefPubMed
7.
go back to reference Cherng JM, Shieh DE, Chiang W, Chang MY, Chiang C: Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci Biotechnol Biochem. 2007, 71: 1500-4. 10.1271/bbb.70008.CrossRefPubMed Cherng JM, Shieh DE, Chiang W, Chang MY, Chiang C: Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci Biotechnol Biochem. 2007, 71: 1500-4. 10.1271/bbb.70008.CrossRefPubMed
8.
go back to reference Feng R, Ni HM, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin XM: Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem. 2007, 282: 13468-76. 10.1074/jbc.M610616200.CrossRefPubMed Feng R, Ni HM, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin XM: Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem. 2007, 282: 13468-76. 10.1074/jbc.M610616200.CrossRefPubMed
9.
go back to reference Aggarwal BB, Shishodia S: Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006, 71: 1397-1421. 10.1016/j.bcp.2006.02.009.CrossRefPubMed Aggarwal BB, Shishodia S: Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006, 71: 1397-1421. 10.1016/j.bcp.2006.02.009.CrossRefPubMed
10.
go back to reference Jagetia GC, Baliga MS, Malagi KJ, Sethukumar Kamath M: The evaluation of the radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to gamma-radiation. Phytomedicine. 2002, 9: 99-108. 10.1078/0944-7113-00095.CrossRefPubMed Jagetia GC, Baliga MS, Malagi KJ, Sethukumar Kamath M: The evaluation of the radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to gamma-radiation. Phytomedicine. 2002, 9: 99-108. 10.1078/0944-7113-00095.CrossRefPubMed
11.
go back to reference Kaur S, Arora S, Kaur K, Kumar S: The in vitro antimutagenic activity of Triphala- an Indian herbal drug. Food Chem Toxicol. 2002, 40: 527-34. 10.1016/S0278-6915(01)00101-6.CrossRefPubMed Kaur S, Arora S, Kaur K, Kumar S: The in vitro antimutagenic activity of Triphala- an Indian herbal drug. Food Chem Toxicol. 2002, 40: 527-34. 10.1016/S0278-6915(01)00101-6.CrossRefPubMed
12.
go back to reference Singh DP, Govindarajan R, Rawat AK: High-performance liquid chromatography as a tool for the chemical standardization of Triphala-an Ayurvedic formulation. Phytochem Anal. 2008, 19: 164-8. 10.1002/pca.1032.CrossRefPubMed Singh DP, Govindarajan R, Rawat AK: High-performance liquid chromatography as a tool for the chemical standardization of Triphala-an Ayurvedic formulation. Phytochem Anal. 2008, 19: 164-8. 10.1002/pca.1032.CrossRefPubMed
13.
go back to reference Deep G, Dhiman M, Rao AR, Kale RK: Chemopreventive potential of Triphala (a composite Indian drug) on benzo(a)pyrene induced forestomach tumorigenesis in murine tumor model system. J Exp Clin Cancer Res. 2005, 24: 555-63.PubMed Deep G, Dhiman M, Rao AR, Kale RK: Chemopreventive potential of Triphala (a composite Indian drug) on benzo(a)pyrene induced forestomach tumorigenesis in murine tumor model system. J Exp Clin Cancer Res. 2005, 24: 555-63.PubMed
14.
go back to reference Sandhya T, Mishra KP: Cytotoxic response of breast cancer cell lines, MCF-7 and T 47D to triphala and its modification by antioxidants. Cancer Lett. 2006, 238: 304-13. 10.1016/j.canlet.2005.07.013.CrossRefPubMed Sandhya T, Mishra KP: Cytotoxic response of breast cancer cell lines, MCF-7 and T 47D to triphala and its modification by antioxidants. Cancer Lett. 2006, 238: 304-13. 10.1016/j.canlet.2005.07.013.CrossRefPubMed
15.
go back to reference Sandhya T, Lathika KM, Pandey BN, Mishra KP: Potential of traditional ayurvedic formulation, Triphala as a novel anticancer drug. Cancer Lett. 2006, 231: 206-214. 10.1016/j.canlet.2005.01.035.CrossRefPubMed Sandhya T, Lathika KM, Pandey BN, Mishra KP: Potential of traditional ayurvedic formulation, Triphala as a novel anticancer drug. Cancer Lett. 2006, 231: 206-214. 10.1016/j.canlet.2005.01.035.CrossRefPubMed
16.
go back to reference Sandhya T, Lathika KM, Pandey BN, Bhilwade HN, Chaubey RC, Priyadarsini KI, Mishra KP: Protection against radiation oxidative damage in mice by Triphala. Mutation Res. 2006, 609: 17-25.CrossRefPubMed Sandhya T, Lathika KM, Pandey BN, Bhilwade HN, Chaubey RC, Priyadarsini KI, Mishra KP: Protection against radiation oxidative damage in mice by Triphala. Mutation Res. 2006, 609: 17-25.CrossRefPubMed
17.
go back to reference Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS: Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol. 1996, 148: 1763-70.PubMedPubMedCentral Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS: Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol. 1996, 148: 1763-70.PubMedPubMedCentral
18.
go back to reference Ouyang H, Mou Lj, Luk C, Liu N, Karaskova J, Squire J, Tsao MS: Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol. 2000, 157: 1623-31.CrossRefPubMedPubMedCentral Ouyang H, Mou Lj, Luk C, Liu N, Karaskova J, Squire J, Tsao MS: Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol. 2000, 157: 1623-31.CrossRefPubMedPubMedCentral
19.
go back to reference Srivastava SK, Singh SV: Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis. 2004, 25: 1701-9. 10.1093/carcin/bgh179.CrossRefPubMed Srivastava SK, Singh SV: Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis. 2004, 25: 1701-9. 10.1093/carcin/bgh179.CrossRefPubMed
20.
go back to reference Zhang R, Loganathan S, Humphreys I, Srivastava SK: Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J Nutr. 2006, 136: 2728-34.PubMed Zhang R, Loganathan S, Humphreys I, Srivastava SK: Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J Nutr. 2006, 136: 2728-34.PubMed
21.
go back to reference Srivastava SK, Xiao D, Lew KL, Hershberger P, Kokkinakis DM, Johnson CS, Trump DL, Singh SV: Allyl isothiocyanate, a natural constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis. 2003, 24: 1665-70. 10.1093/carcin/bgg123.CrossRefPubMed Srivastava SK, Xiao D, Lew KL, Hershberger P, Kokkinakis DM, Johnson CS, Trump DL, Singh SV: Allyl isothiocyanate, a natural constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis. 2003, 24: 1665-70. 10.1093/carcin/bgg123.CrossRefPubMed
22.
go back to reference Liebermann DA, Hoffman B, Vesely D: p53 induced growth arrest versus apoptosis and its modulation by survival cytokines. Cell Cycle. 2007, 6: 166-70.CrossRefPubMed Liebermann DA, Hoffman B, Vesely D: p53 induced growth arrest versus apoptosis and its modulation by survival cytokines. Cell Cycle. 2007, 6: 166-70.CrossRefPubMed
23.
go back to reference Lin T, Mak NK, Yang MS: MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation. Toxocology. 2008, 247: 145-153. 10.1016/j.tox.2008.02.017.CrossRef Lin T, Mak NK, Yang MS: MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation. Toxocology. 2008, 247: 145-153. 10.1016/j.tox.2008.02.017.CrossRef
24.
go back to reference Persons DL, Yazlovitskaya EM, Pelling JC: Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem. 2000, 275: 35778-85. 10.1074/jbc.M004267200.CrossRefPubMed Persons DL, Yazlovitskaya EM, Pelling JC: Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem. 2000, 275: 35778-85. 10.1074/jbc.M004267200.CrossRefPubMed
25.
go back to reference Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, Segawa K, Ikeda Y, Kizaki M: Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at ser-15 residue by reactive species. Cancer Res. 2004, 64: 1071-8. 10.1158/0008-5472.CAN-03-1670.CrossRefPubMed Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, Segawa K, Ikeda Y, Kizaki M: Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at ser-15 residue by reactive species. Cancer Res. 2004, 64: 1071-8. 10.1158/0008-5472.CAN-03-1670.CrossRefPubMed
26.
go back to reference Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz : Sulphoraphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem. 2005, 280: 19911-24. 10.1074/jbc.M412443200.CrossRefPubMed Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz : Sulphoraphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem. 2005, 280: 19911-24. 10.1074/jbc.M412443200.CrossRefPubMed
27.
go back to reference Dong LF, Swettenham E, Eliasson J, Wang XF, Gold M, Medunic Y, Stantic M, Low P, Prochazka L, Witting PK, Turanek J, Akporiaye ET, Ralph SJ, Neuzil J: Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 2007, 67: 11906-13. 10.1158/0008-5472.CAN-07-3034.CrossRefPubMed Dong LF, Swettenham E, Eliasson J, Wang XF, Gold M, Medunic Y, Stantic M, Low P, Prochazka L, Witting PK, Turanek J, Akporiaye ET, Ralph SJ, Neuzil J: Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 2007, 67: 11906-13. 10.1158/0008-5472.CAN-07-3034.CrossRefPubMed
28.
go back to reference Mclean L, Soto U, Agama K, Agama K, Francis J, Jimenez R, Pommier Y, Sowers L, Brantley E: Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer. 2008, 22: 1665-74. 10.1002/ijc.23244. Mclean L, Soto U, Agama K, Agama K, Francis J, Jimenez R, Pommier Y, Sowers L, Brantley E: Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer. 2008, 22: 1665-74. 10.1002/ijc.23244.
29.
go back to reference Lau AT, Wang Y, Chiu JF: Reactive oxygen species: Current knowledge and applications in cancer research and therapeutic. J Cell Biochem. 2008, 104: 657-67. 10.1002/jcb.21655.CrossRefPubMed Lau AT, Wang Y, Chiu JF: Reactive oxygen species: Current knowledge and applications in cancer research and therapeutic. J Cell Biochem. 2008, 104: 657-67. 10.1002/jcb.21655.CrossRefPubMed
30.
go back to reference Ganguly A, Das B, Roy A, Sen N, Dasgupta SB, Mukhopadhayay S, Majumder HK: Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species-mediated apoptotic topoisomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer Res. 2007, 67: 11848-58. 10.1158/0008-5472.CAN-07-1615.CrossRefPubMed Ganguly A, Das B, Roy A, Sen N, Dasgupta SB, Mukhopadhayay S, Majumder HK: Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species-mediated apoptotic topoisomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer Res. 2007, 67: 11848-58. 10.1158/0008-5472.CAN-07-1615.CrossRefPubMed
31.
go back to reference Martirosyan A, Leonard S, Shi X, Griffith B, Gannett P, Strobl J: Action of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells. Pharmacol Exp Ther. 2006, 317: 546-52. 10.1124/jpet.105.096891.CrossRef Martirosyan A, Leonard S, Shi X, Griffith B, Gannett P, Strobl J: Action of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells. Pharmacol Exp Ther. 2006, 317: 546-52. 10.1124/jpet.105.096891.CrossRef
32.
go back to reference Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW: ATM mediates phosphorylation at multiple p53 sites, including Ser (46), in response to ionizing radiation. J Biol Chem. 2002, 277: 12491-4. 10.1074/jbc.C200093200.CrossRefPubMed Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW: ATM mediates phosphorylation at multiple p53 sites, including Ser (46), in response to ionizing radiation. J Biol Chem. 2002, 277: 12491-4. 10.1074/jbc.C200093200.CrossRefPubMed
33.
go back to reference Pabla N, Huang S, Mi QS, Damiel R, Dong Z: ATR-chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem. 2008, 283: 6572-83. 10.1074/jbc.M707568200.CrossRefPubMed Pabla N, Huang S, Mi QS, Damiel R, Dong Z: ATR-chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem. 2008, 283: 6572-83. 10.1074/jbc.M707568200.CrossRefPubMed
34.
go back to reference Gottifredi V, Shieh S, Taya Y, Prives C: p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci USA. 2001, 98: 1036-41. 10.1073/pnas.021282898.CrossRefPubMedPubMedCentral Gottifredi V, Shieh S, Taya Y, Prives C: p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci USA. 2001, 98: 1036-41. 10.1073/pnas.021282898.CrossRefPubMedPubMedCentral
35.
go back to reference Wu SJ, Ng LT: MAPK inhibitors and pifithrin-alpha block cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells. Food Chem Toxicol. 2007, 45: 2446-53. 10.1016/j.fct.2007.05.032.CrossRefPubMed Wu SJ, Ng LT: MAPK inhibitors and pifithrin-alpha block cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells. Food Chem Toxicol. 2007, 45: 2446-53. 10.1016/j.fct.2007.05.032.CrossRefPubMed
36.
go back to reference Ma Y, Yu WD, Kong RX, Trump DL, Johnson CS: Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathway in 1,25D3-mediated apoptosis in squamous cell carcinoma cells. Cancer Res. 2006, 66: 8131-8. 10.1158/0008-5472.CAN-06-1333.CrossRefPubMed Ma Y, Yu WD, Kong RX, Trump DL, Johnson CS: Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathway in 1,25D3-mediated apoptosis in squamous cell carcinoma cells. Cancer Res. 2006, 66: 8131-8. 10.1158/0008-5472.CAN-06-1333.CrossRefPubMed
37.
go back to reference Singh S, Upadhyav AK, Ajay AK, Bhat MK: p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: a novel target of p53 in apoptosis. FEBS Lett. 2007, 581: 289-95. 10.1016/j.febslet.2006.12.035.CrossRefPubMed Singh S, Upadhyav AK, Ajay AK, Bhat MK: p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: a novel target of p53 in apoptosis. FEBS Lett. 2007, 581: 289-95. 10.1016/j.febslet.2006.12.035.CrossRefPubMed
38.
go back to reference Jeon ES, Lee MJ, Sung SM, Kim JH: Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem. 2007, 100: 1536-47. 10.1002/jcb.21141.CrossRefPubMed Jeon ES, Lee MJ, Sung SM, Kim JH: Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem. 2007, 100: 1536-47. 10.1002/jcb.21141.CrossRefPubMed
39.
go back to reference Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong AN: ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis. 2006, 27: 437-45. 10.1093/carcin/bgi251.CrossRefPubMed Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong AN: ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis. 2006, 27: 437-45. 10.1093/carcin/bgi251.CrossRefPubMed
40.
go back to reference Choi YJ, Lim SY, Woo JH, Kim YH, Kwon YK, Suh SI, Lee SH, Choi WY, Kim JG, Lee IS, Park JW, Kwon TK: Sodium orthovanadate potentiates EGCG-induced apoptosis that is dependent on the ERK pathway. Biochem Biophys Res Commun. 2003, 305: 176-85. 10.1016/S0006-291X(03)00719-8.CrossRefPubMed Choi YJ, Lim SY, Woo JH, Kim YH, Kwon YK, Suh SI, Lee SH, Choi WY, Kim JG, Lee IS, Park JW, Kwon TK: Sodium orthovanadate potentiates EGCG-induced apoptosis that is dependent on the ERK pathway. Biochem Biophys Res Commun. 2003, 305: 176-85. 10.1016/S0006-291X(03)00719-8.CrossRefPubMed
41.
go back to reference Yu W, Liao QY, Hantash FM, Sanders BG, Kline K: Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res. 2001, 61: 6569-76.PubMed Yu W, Liao QY, Hantash FM, Sanders BG, Kline K: Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res. 2001, 61: 6569-76.PubMed
42.
go back to reference Zhou Q, Meng D, Yan B, Jiang BH, Fang J: Transactivation of epidermal growth factor receptor by insulin-like growth factor 1 requires basal hydrogen peroxide. FEBS Lett. 2006, 580: 5161-6. 10.1016/j.febslet.2006.08.068.CrossRefPubMed Zhou Q, Meng D, Yan B, Jiang BH, Fang J: Transactivation of epidermal growth factor receptor by insulin-like growth factor 1 requires basal hydrogen peroxide. FEBS Lett. 2006, 580: 5161-6. 10.1016/j.febslet.2006.08.068.CrossRefPubMed
43.
go back to reference Lee JS, Kim SY, Kwon CH, Kim YK: EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol. 2006, 80: 337-46. 10.1007/s00204-005-0052-2.CrossRefPubMed Lee JS, Kim SY, Kwon CH, Kim YK: EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol. 2006, 80: 337-46. 10.1007/s00204-005-0052-2.CrossRefPubMed
44.
go back to reference Midwinter RG, Peskin AV, Vissers MC, Winterbourn CC: Extracellular oxidation by taurine chloramine activates ERK via the epidermal growth factor receptor. J Biol Chem. 2004, 279: 32205-11. 10.1074/jbc.M402070200.CrossRefPubMed Midwinter RG, Peskin AV, Vissers MC, Winterbourn CC: Extracellular oxidation by taurine chloramine activates ERK via the epidermal growth factor receptor. J Biol Chem. 2004, 279: 32205-11. 10.1074/jbc.M402070200.CrossRefPubMed
45.
go back to reference Arany I, Megyesi JK, Kaneto H, Price PM, Safirstein RL: Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2004, 287: F543-9. 10.1152/ajprenal.00112.2004.CrossRefPubMed Arany I, Megyesi JK, Kaneto H, Price PM, Safirstein RL: Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2004, 287: F543-9. 10.1152/ajprenal.00112.2004.CrossRefPubMed
46.
go back to reference Höcker M, Rosenberg I, Xavier R, Henihan RJ, Wieham RJ, Wiedernmann B, Rosewicz S, Podolsky DK, Wanf TC: Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. J Biol Chem. 1998, 273: 23046-54. 10.1074/jbc.273.36.23046.CrossRefPubMed Höcker M, Rosenberg I, Xavier R, Henihan RJ, Wieham RJ, Wiedernmann B, Rosewicz S, Podolsky DK, Wanf TC: Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. J Biol Chem. 1998, 273: 23046-54. 10.1074/jbc.273.36.23046.CrossRefPubMed
47.
go back to reference Bodo J, Jakubikova J, Chalupa I, Bartosova Z, horakova K, Floch L, Sedlak J: Apoptotic effect of ethyl-4-isothiocyanatobutanoate is associated with DNA damage, proteasomal activity and induction of p53 and p21cip1/waf1. Apoptosis. 2006, 11: 1299-310. 10.1007/s10495-006-8760-5.CrossRefPubMed Bodo J, Jakubikova J, Chalupa I, Bartosova Z, horakova K, Floch L, Sedlak J: Apoptotic effect of ethyl-4-isothiocyanatobutanoate is associated with DNA damage, proteasomal activity and induction of p53 and p21cip1/waf1. Apoptosis. 2006, 11: 1299-310. 10.1007/s10495-006-8760-5.CrossRefPubMed
48.
go back to reference Lee JH, Kim KT: Regulation of cyclin-dependent kinase 5 and p53 by ERK1/2 pathway in the DNA damage-induced neuronal death. J Cell Physiol. 2007, 210: 784-97. 10.1002/jcp.20899.CrossRefPubMed Lee JH, Kim KT: Regulation of cyclin-dependent kinase 5 and p53 by ERK1/2 pathway in the DNA damage-induced neuronal death. J Cell Physiol. 2007, 210: 784-97. 10.1002/jcp.20899.CrossRefPubMed
49.
go back to reference Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002, 277: 12710-7. 10.1074/jbc.M111598200.CrossRefPubMed Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002, 277: 12710-7. 10.1074/jbc.M111598200.CrossRefPubMed
50.
go back to reference Baxer NN, Whitson BA, Tuttle TM: Trends in the treatment and outcome of pancreatic cancer in the United States. Ann Surg Oncol. 2007, 14: 1320-6. 10.1245/s10434-006-9249-8.CrossRef Baxer NN, Whitson BA, Tuttle TM: Trends in the treatment and outcome of pancreatic cancer in the United States. Ann Surg Oncol. 2007, 14: 1320-6. 10.1245/s10434-006-9249-8.CrossRef
51.
go back to reference Rastogi T, Devesa S, Mangtani P, Mathew A, Cooper N, Kao R, Sinha R: Cancer incidence rates among south Asians in four geographic regions: India, Singapore, UK and US. Int J Epidemiol. 2007, 37: 147-60. 10.1093/ije/dym219.CrossRefPubMed Rastogi T, Devesa S, Mangtani P, Mathew A, Cooper N, Kao R, Sinha R: Cancer incidence rates among south Asians in four geographic regions: India, Singapore, UK and US. Int J Epidemiol. 2007, 37: 147-60. 10.1093/ije/dym219.CrossRefPubMed
52.
go back to reference Dhir V, Mohandas KM: Epidemiology of digestive tract cancers in India IV. Gall bladder and pancreas. Indian J Gastroenterol. 1999, 18: 24-8.PubMed Dhir V, Mohandas KM: Epidemiology of digestive tract cancers in India IV. Gall bladder and pancreas. Indian J Gastroenterol. 1999, 18: 24-8.PubMed
53.
go back to reference Dorai T, Aggarwal BB: Role of chemopreventive agents in cancer therapy. Cancer Lett. 2004, 215: 129-40. 10.1016/j.canlet.2004.07.013.CrossRefPubMed Dorai T, Aggarwal BB: Role of chemopreventive agents in cancer therapy. Cancer Lett. 2004, 215: 129-40. 10.1016/j.canlet.2004.07.013.CrossRefPubMed
54.
go back to reference Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M: Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. PNAS. 2008, 105: 11105-11109. 10.1073/pnas.0804226105.CrossRefPubMedPubMedCentral Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M: Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. PNAS. 2008, 105: 11105-11109. 10.1073/pnas.0804226105.CrossRefPubMedPubMedCentral
Metadata
Title
Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis
Authors
Yan Shi
Ravi P Sahu
Sanjay K Srivastava
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-294

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine