Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas

Authors: Agda KB Lucio-Eterovic, Maria AA Cortez, Elvis T Valera, Fabio JN Motta, Rosane GP Queiroz, Helio R Machado, Carlos G Carlotti Jr, Luciano Neder, Carlos A Scrideli, Luiz G Tone

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global HDAC expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas.

Methods

Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene β-glucuronidase. Protein levels were evaluated by western blotting.

Results

We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue.

Conclusion

Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica. 2007, 114 (2): 97-109. 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica. 2007, 114 (2): 97-109. 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentral
2.
go back to reference Lin HY, Chen CS, Lin SP, Weng JR, Chen CS: Targeting histone deacetylase in cancer therapy. Medicinal research reviews. 2006, 26 (4): 397-413. 10.1002/med.20056.CrossRefPubMed Lin HY, Chen CS, Lin SP, Weng JR, Chen CS: Targeting histone deacetylase in cancer therapy. Medicinal research reviews. 2006, 26 (4): 397-413. 10.1002/med.20056.CrossRefPubMed
3.
go back to reference Wade PA: Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Human molecular genetics. 2001, 10 (7): 693-698. 10.1093/hmg/10.7.693.CrossRefPubMed Wade PA: Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Human molecular genetics. 2001, 10 (7): 693-698. 10.1093/hmg/10.7.693.CrossRefPubMed
4.
go back to reference Gray SG, Ekstrom TJ: The human histone deacetylase family. Experimental cell research. 2001, 262 (2): 75-83. 10.1006/excr.2000.5080.CrossRefPubMed Gray SG, Ekstrom TJ: The human histone deacetylase family. Experimental cell research. 2001, 262 (2): 75-83. 10.1006/excr.2000.5080.CrossRefPubMed
5.
go back to reference Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C: HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell research. 2007, 17 (3): 195-211.PubMed Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C: HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell research. 2007, 17 (3): 195-211.PubMed
6.
go back to reference de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. The Biochemical journal. 2003, 370 (Pt 3): 737-749. 10.1042/BJ20021321.CrossRefPubMedPubMedCentral de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. The Biochemical journal. 2003, 370 (Pt 3): 737-749. 10.1042/BJ20021321.CrossRefPubMedPubMedCentral
7.
go back to reference Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & development. 1999, 13 (15): 1924-1935. 10.1101/gad.13.15.1924.CrossRef Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & development. 1999, 13 (15): 1924-1935. 10.1101/gad.13.15.1924.CrossRef
8.
go back to reference Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM: Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. The Journal of biological chemistry. 2006, 281 (19): 13548-13558. 10.1074/jbc.M510023200.CrossRefPubMed Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM: Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. The Journal of biological chemistry. 2006, 281 (19): 13548-13558. 10.1074/jbc.M510023200.CrossRefPubMed
9.
go back to reference Grozinger CM, Hassig CA, Schreiber SL: Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proceedings of the National Academy of Sciences of the United States of America. 1999, 96 (9): 4868-4873. 10.1073/pnas.96.9.4868.CrossRefPubMedPubMedCentral Grozinger CM, Hassig CA, Schreiber SL: Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proceedings of the National Academy of Sciences of the United States of America. 1999, 96 (9): 4868-4873. 10.1073/pnas.96.9.4868.CrossRefPubMedPubMedCentral
10.
go back to reference Verdin E, Dequiedt F, Kasler HG: Class II histone deacetylases: versatile regulators. Trends Genet. 2003, 19 (5): 286-293. 10.1016/S0168-9525(03)00073-8.CrossRefPubMed Verdin E, Dequiedt F, Kasler HG: Class II histone deacetylases: versatile regulators. Trends Genet. 2003, 19 (5): 286-293. 10.1016/S0168-9525(03)00073-8.CrossRefPubMed
11.
go back to reference Kao HY, Downes M, Ordentlich P, Evans RM: Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes & development. 2000, 14 (1): 55-66. Kao HY, Downes M, Ordentlich P, Evans RM: Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes & development. 2000, 14 (1): 55-66.
12.
go back to reference Verdel A, Khochbin S: Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. The Journal of biological chemistry. 1999, 274 (4): 2440-2445. 10.1074/jbc.274.4.2440.CrossRefPubMed Verdel A, Khochbin S: Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. The Journal of biological chemistry. 1999, 274 (4): 2440-2445. 10.1074/jbc.274.4.2440.CrossRefPubMed
13.
go back to reference Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S: mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. The Journal of biological chemistry. 2000, 275 (20): 15594-15599. 10.1074/jbc.M908437199.CrossRefPubMed Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S: mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. The Journal of biological chemistry. 2000, 275 (20): 15594-15599. 10.1074/jbc.M908437199.CrossRefPubMed
14.
go back to reference Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T: HDAC4 deacetylase associates with and represses the MEF2 transcription factor. The EMBO journal. 1999, 18 (18): 5099-5107. 10.1093/emboj/18.18.5099.CrossRefPubMedPubMedCentral Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T: HDAC4 deacetylase associates with and represses the MEF2 transcription factor. The EMBO journal. 1999, 18 (18): 5099-5107. 10.1093/emboj/18.18.5099.CrossRefPubMedPubMedCentral
15.
go back to reference Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th'ng J, Han J, Yang XJ: HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol. 1999, 19 (11): 7816-7827.CrossRefPubMedPubMedCentral Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th'ng J, Han J, Yang XJ: HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol. 1999, 19 (11): 7816-7827.CrossRefPubMedPubMedCentral
16.
go back to reference Blander G, Guarente L: The Sir2 family of protein deacetylases. Annual review of biochemistry. 2004, 73: 417-435. 10.1146/annurev.biochem.73.011303.073651.CrossRefPubMed Blander G, Guarente L: The Sir2 family of protein deacetylases. Annual review of biochemistry. 2004, 73: 417-435. 10.1146/annurev.biochem.73.011303.073651.CrossRefPubMed
17.
go back to reference Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403 (6771): 795-800. 10.1038/35001622.CrossRefPubMed Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403 (6771): 795-800. 10.1038/35001622.CrossRefPubMed
18.
go back to reference Marmorstein R: Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochemical Society transactions. 2004, 32 (Pt 6): 904-909.CrossRefPubMed Marmorstein R: Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochemical Society transactions. 2004, 32 (Pt 6): 904-909.CrossRefPubMed
19.
go back to reference Gao L, Cueto MA, Asselbergs F, Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. The Journal of biological chemistry. 2002, 277 (28): 25748-25755. 10.1074/jbc.M111871200.CrossRefPubMed Gao L, Cueto MA, Asselbergs F, Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. The Journal of biological chemistry. 2002, 277 (28): 25748-25755. 10.1074/jbc.M111871200.CrossRefPubMed
20.
go back to reference Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M: Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. International journal of radiation oncology, biology, physics. 2007, 69 (1): 214-220.CrossRefPubMed Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M: Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. International journal of radiation oncology, biology, physics. 2007, 69 (1): 214-220.CrossRefPubMed
21.
go back to reference Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ: Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. International journal of cancer. 2005, 114 (3): 380-386. 10.1002/ijc.20774.CrossRefPubMed Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ: Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. International journal of cancer. 2005, 114 (3): 380-386. 10.1002/ijc.20774.CrossRefPubMed
22.
go back to reference Entin-Meer M, Yang X, VandenBerg SR, Lamborn KR, Nudelman A, Rephaeli A, Haas-Kogan DA: In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro-oncology. 2007, 9 (2): 82-88. 10.1215/15228517-2006-032.CrossRefPubMedPubMedCentral Entin-Meer M, Yang X, VandenBerg SR, Lamborn KR, Nudelman A, Rephaeli A, Haas-Kogan DA: In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro-oncology. 2007, 9 (2): 82-88. 10.1215/15228517-2006-032.CrossRefPubMedPubMedCentral
23.
go back to reference Kim JH, Shin JH, Kim IH: Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. International journal of radiation oncology, biology, physics. 2004, 59 (4): 1174-1180. 10.1016/j.ijrobp.2004.03.001.CrossRefPubMed Kim JH, Shin JH, Kim IH: Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. International journal of radiation oncology, biology, physics. 2004, 59 (4): 1174-1180. 10.1016/j.ijrobp.2004.03.001.CrossRefPubMed
24.
go back to reference Sawa H, Murakami H, Kumagai M, Nakasato M, Yamauchi S, Matsuyama N, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H: Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta neuropathologica. 2004, 107 (6): 523-531. 10.1007/s00401-004-0841-3.CrossRefPubMed Sawa H, Murakami H, Kumagai M, Nakasato M, Yamauchi S, Matsuyama N, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H: Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta neuropathologica. 2004, 107 (6): 523-531. 10.1007/s00401-004-0841-3.CrossRefPubMed
25.
go back to reference Ugur HC, Ramakrishna N, Bello L, Menon LG, Kim SK, Black PM, Carroll RS: Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. Journal of neuro-oncology. 2007, 83 (3): 267-275. 10.1007/s11060-007-9337-z.CrossRefPubMed Ugur HC, Ramakrishna N, Bello L, Menon LG, Kim SK, Black PM, Carroll RS: Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. Journal of neuro-oncology. 2007, 83 (3): 267-275. 10.1007/s11060-007-9337-z.CrossRefPubMed
26.
go back to reference Wetzel M, Premkumar DR, Arnold B, Pollack IF: Effect of trichostatin A, a histone deacetylase inhibitor, on glioma proliferation in vitro by inducing cell cycle arrest and apoptosis. Journal of neurosurgery. 2005, 103 (6 Suppl): 549-556.PubMed Wetzel M, Premkumar DR, Arnold B, Pollack IF: Effect of trichostatin A, a histone deacetylase inhibitor, on glioma proliferation in vitro by inducing cell cycle arrest and apoptosis. Journal of neurosurgery. 2005, 103 (6 Suppl): 549-556.PubMed
27.
go back to reference Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259): 680-685. 10.1038/227680a0.CrossRefPubMed Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259): 680-685. 10.1038/227680a0.CrossRefPubMed
28.
go back to reference Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC, Hooi SC: Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell death and differentiation. 2005, 12 (4): 395-404. 10.1038/sj.cdd.4401567.CrossRefPubMed Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC, Hooi SC: Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell death and differentiation. 2005, 12 (4): 395-404. 10.1038/sj.cdd.4401567.CrossRefPubMed
29.
go back to reference Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY: Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001, 92 (12): 1300-1304.CrossRefPubMed Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY: Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001, 92 (12): 1300-1304.CrossRefPubMed
30.
go back to reference Liby P, Kostrouchova M, Pohludka M, Yilma P, Hrabal P, Sikora J, Brozova E, Kostrouchova M, Rall JE, Kostrouch Z: Elevated and deregulated expression of HDAC3 in human astrocytic glial tumours. Folia biologica. 2006, 52 (1-2): 21-33.PubMed Liby P, Kostrouchova M, Pohludka M, Yilma P, Hrabal P, Sikora J, Brozova E, Kostrouchova M, Rall JE, Kostrouch Z: Elevated and deregulated expression of HDAC3 in human astrocytic glial tumours. Folia biologica. 2006, 52 (1-2): 21-33.PubMed
31.
go back to reference Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C: Differential expression of selected histone modifier genes in human solid cancers. BMC genomics. 2006, 7: 90-10.1186/1471-2164-7-90.CrossRefPubMedPubMedCentral Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C: Differential expression of selected histone modifier genes in human solid cancers. BMC genomics. 2006, 7: 90-10.1186/1471-2164-7-90.CrossRefPubMedPubMedCentral
32.
go back to reference Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T: Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. International journal of cancer. 2004, 112 (1): 26-32. 10.1002/ijc.20395.CrossRefPubMed Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T: Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. International journal of cancer. 2004, 112 (1): 26-32. 10.1002/ijc.20395.CrossRefPubMed
33.
go back to reference Goussia AC, Agnantis NJ, Rao JS, Kyritsis AP: Cytogenetic and molecular abnormalities in astrocytic gliomas (Review). Oncology reports. 2000, 7 (2): 401-412.PubMed Goussia AC, Agnantis NJ, Rao JS, Kyritsis AP: Cytogenetic and molecular abnormalities in astrocytic gliomas (Review). Oncology reports. 2000, 7 (2): 401-412.PubMed
34.
go back to reference Jiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I, Aldape K, Sawaya R, Bruner JM, Fuller GN, Zhang W: Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics. 2006, 6 (10): 2964-2971. 10.1002/pmic.200500555.CrossRefPubMed Jiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I, Aldape K, Sawaya R, Bruner JM, Fuller GN, Zhang W: Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics. 2006, 6 (10): 2964-2971. 10.1002/pmic.200500555.CrossRefPubMed
35.
go back to reference Kleihues P, Ohgaki H: Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology. 1999, 1 (1): 44-51. 10.1215/15228517-1-1-44.PubMedPubMedCentral Kleihues P, Ohgaki H: Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology. 1999, 1 (1): 44-51. 10.1215/15228517-1-1-44.PubMedPubMedCentral
36.
go back to reference Michotte A, Neyns B, Chaskis C, Sadones J, In 't Veld P: Neuropathological and molecular aspects of low-grade and high-grade gliomas. Acta neurologica Belgica. 2004, 104 (4): 148-153.PubMed Michotte A, Neyns B, Chaskis C, Sadones J, In 't Veld P: Neuropathological and molecular aspects of low-grade and high-grade gliomas. Acta neurologica Belgica. 2004, 104 (4): 148-153.PubMed
37.
go back to reference Ng HK, Lam PY: The molecular genetics of central nervous system tumors. Pathology. 1998, 30 (2): 196-202. 10.1080/00313029800169236.CrossRefPubMed Ng HK, Lam PY: The molecular genetics of central nervous system tumors. Pathology. 1998, 30 (2): 196-202. 10.1080/00313029800169236.CrossRefPubMed
38.
go back to reference Kolle D, Brosch G, Lechner T, Pipal A, Helliger W, Taplick J, Loidl P: Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity. Biochemistry. 1999, 38 (21): 6769-6773. 10.1021/bi982702v.CrossRefPubMed Kolle D, Brosch G, Lechner T, Pipal A, Helliger W, Taplick J, Loidl P: Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity. Biochemistry. 1999, 38 (21): 6769-6773. 10.1021/bi982702v.CrossRefPubMed
39.
go back to reference Riester D, Hildmann C, Grunewald S, Beckers T, Schwienhorst A: Factors affecting the substrate specificity of histone deacetylases. Biochemical and biophysical research communications. 2007, 357 (2): 439-445. 10.1016/j.bbrc.2007.03.158.CrossRefPubMed Riester D, Hildmann C, Grunewald S, Beckers T, Schwienhorst A: Factors affecting the substrate specificity of histone deacetylases. Biochemical and biophysical research communications. 2007, 357 (2): 439-445. 10.1016/j.bbrc.2007.03.158.CrossRefPubMed
40.
go back to reference Wegener D, Hildmann C, Riester D, Schwienhorst A: Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Analytical biochemistry. 2003, 321 (2): 202-208. 10.1016/S0003-2697(03)00426-3.CrossRefPubMed Wegener D, Hildmann C, Riester D, Schwienhorst A: Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Analytical biochemistry. 2003, 321 (2): 202-208. 10.1016/S0003-2697(03)00426-3.CrossRefPubMed
41.
go back to reference Wiren M, Silverstein RA, Sinha I, Walfridsson J, Lee HM, Laurenson P, Pillus L, Robyr D, Grunstein M, Ekwall K: Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. The EMBO journal. 2005, 24 (16): 2906-2918. 10.1038/sj.emboj.7600758.CrossRefPubMedPubMedCentral Wiren M, Silverstein RA, Sinha I, Walfridsson J, Lee HM, Laurenson P, Pillus L, Robyr D, Grunstein M, Ekwall K: Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. The EMBO journal. 2005, 24 (16): 2906-2918. 10.1038/sj.emboj.7600758.CrossRefPubMedPubMedCentral
42.
go back to reference Brinkmann H, Dahler AL, Popa C, Serewko MM, Parsons PG, Gabrielli BG, Burgess AJ, Saunders NA: Histone hyperacetylation induced by histone deacetylase inhibitors is not sufficient to cause growth inhibition in human dermal fibroblasts. The Journal of biological chemistry. 2001, 276 (25): 22491-22499. 10.1074/jbc.M100206200.CrossRefPubMed Brinkmann H, Dahler AL, Popa C, Serewko MM, Parsons PG, Gabrielli BG, Burgess AJ, Saunders NA: Histone hyperacetylation induced by histone deacetylase inhibitors is not sufficient to cause growth inhibition in human dermal fibroblasts. The Journal of biological chemistry. 2001, 276 (25): 22491-22499. 10.1074/jbc.M100206200.CrossRefPubMed
43.
go back to reference Johnstone RW, Licht JD: Histone deacetylase inhibitors in cancer therapy: is transcription the primary target?. Cancer cell. 2003, 4 (1): 13-18. 10.1016/S1535-6108(03)00165-X.CrossRefPubMed Johnstone RW, Licht JD: Histone deacetylase inhibitors in cancer therapy: is transcription the primary target?. Cancer cell. 2003, 4 (1): 13-18. 10.1016/S1535-6108(03)00165-X.CrossRefPubMed
44.
go back to reference Acharya MR, Sparreboom A, Venitz J, Figg WD: Rational development of histone deacetylase inhibitors as anticancer agents: a review. Molecular pharmacology. 2005, 68 (4): 917-932. 10.1124/mol.105.014167.CrossRefPubMed Acharya MR, Sparreboom A, Venitz J, Figg WD: Rational development of histone deacetylase inhibitors as anticancer agents: a review. Molecular pharmacology. 2005, 68 (4): 917-932. 10.1124/mol.105.014167.CrossRefPubMed
45.
go back to reference Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC: Clinical development of histone deacetylase inhibitors as anticancer agents. Annual review of pharmacology and toxicology. 2005, 45: 495-528. 10.1146/annurev.pharmtox.45.120403.095825.CrossRefPubMed Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC: Clinical development of histone deacetylase inhibitors as anticancer agents. Annual review of pharmacology and toxicology. 2005, 45: 495-528. 10.1146/annurev.pharmtox.45.120403.095825.CrossRefPubMed
Metadata
Title
Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas
Authors
Agda KB Lucio-Eterovic
Maria AA Cortez
Elvis T Valera
Fabio JN Motta
Rosane GP Queiroz
Helio R Machado
Carlos G Carlotti Jr
Luciano Neder
Carlos A Scrideli
Luiz G Tone
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-243

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine