Skip to main content
Top
Published in: BMC Cancer 1/2004

Open Access 01-12-2004 | Research article

Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma

Authors: Michael J Lewis, John P Wiebe, J Godfrey Heathcote

Published in: BMC Cancer | Issue 1/2004

Login to get access

Abstract

Background

Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5α-reductase (5αR) and lower 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO activities. The resulting higher levels of 5α-reduced progesterone metabolites such as 5α-pregnane-3,20-dione (5αP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression.

Methods

Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5αR type 1 (SRD5A1), 5αR type 2 (SRD5A2), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 20α-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples.

Results

Expression of 5αR1 and 5αR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3α-HSO2, 3α-HSO3 and 20α-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5αR1 and 5αR2 were about 35–85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5αR were significantly higher than the ratios for the HSOs.

Conclusions

The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5αR1) and SRD5A2 (5αR2) is elevated, and expression of AKR1C1 (20α-HSO), AKR1C2 (3α-HSO3) and AKR1C3 (3α-HSO2) is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5αP and decreases in mitogen/metastasis inhibiting 3αHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing protocols to prevent or reverse the changes in progesterone metabolism associated with breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mori M, Tamaoki BI: Formation of a steroidal allyl alcohol in the mammary glands of mice. Steroids. 1977, 29: 517-524. 10.1016/0039-128X(77)90071-X.CrossRefPubMed Mori M, Tamaoki BI: Formation of a steroidal allyl alcohol in the mammary glands of mice. Steroids. 1977, 29: 517-524. 10.1016/0039-128X(77)90071-X.CrossRefPubMed
2.
go back to reference Mori M, Tamaoki BI: In vitro metabolism of progesterone in the mammary tumor and the normal mammary gland of GRS/A strain of mice and dependency of some steroid- metabolizing enzyme activities upon ovarian function. European Journal of Cancer. 1980, 16: 185-193. 10.1016/0014-2964(80)90150-4.CrossRefPubMed Mori M, Tamaoki BI: In vitro metabolism of progesterone in the mammary tumor and the normal mammary gland of GRS/A strain of mice and dependency of some steroid- metabolizing enzyme activities upon ovarian function. European Journal of Cancer. 1980, 16: 185-193. 10.1016/0014-2964(80)90150-4.CrossRefPubMed
3.
go back to reference Mori M, Tominaga T, Tamaoki BI: Steroid metabolism in normal mammary gland and in the dimethylbenzanthracene-induced mammary tumor of rats. Endocrinology. 1978, 102: 1387-1397.CrossRefPubMed Mori M, Tominaga T, Tamaoki BI: Steroid metabolism in normal mammary gland and in the dimethylbenzanthracene-induced mammary tumor of rats. Endocrinology. 1978, 102: 1387-1397.CrossRefPubMed
4.
go back to reference Mori M, Tominaga T, Kitamura M, Saito T, Tamaoki B: Effect of oophorectomy on progesterone metabolism in DMBA-induced mammary tumours of the rat. European Journal of Cancer. 1980, 16: 1373-1375. 10.1016/0014-2964(80)90297-2.CrossRefPubMed Mori M, Tominaga T, Kitamura M, Saito T, Tamaoki B: Effect of oophorectomy on progesterone metabolism in DMBA-induced mammary tumours of the rat. European Journal of Cancer. 1980, 16: 1373-1375. 10.1016/0014-2964(80)90297-2.CrossRefPubMed
5.
go back to reference Eechaute W, de Thibault de Boesinghe L, Lacroix E: Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene- induced rat mammary tumors. Cancer Res 1983, 43: 4260-4265. Cancer Research. 1983, 43: 4260-4265.PubMed Eechaute W, de Thibault de Boesinghe L, Lacroix E: Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene- induced rat mammary tumors. Cancer Res 1983, 43: 4260-4265. Cancer Research. 1983, 43: 4260-4265.PubMed
6.
go back to reference Shiota K, Sasaki N, Hattori N, Miura R, Hasegawa T, Guang JX, Noda K, Takahashi M: Cytosolic 20α-hydroxysteroid dehydrogenase activity in spontaneous neoplasms in the dog and cat. Journal of Veterinary Medical Science. 1991, 53: 549-552.CrossRefPubMed Shiota K, Sasaki N, Hattori N, Miura R, Hasegawa T, Guang JX, Noda K, Takahashi M: Cytosolic 20α-hydroxysteroid dehydrogenase activity in spontaneous neoplasms in the dog and cat. Journal of Veterinary Medical Science. 1991, 53: 549-552.CrossRefPubMed
7.
go back to reference Tanaka NM, Shiota K, Noda K, Kokubo S, Kadosawa T, Nishimura R, Takahashi M, Sasaki N: 20α-Hydroxysteroid dehydrogenase activity in canine spontaneous neoplasms. Journal of Veterinary Medical Science. 1994, 56: 581-583.CrossRefPubMed Tanaka NM, Shiota K, Noda K, Kokubo S, Kadosawa T, Nishimura R, Takahashi M, Sasaki N: 20α-Hydroxysteroid dehydrogenase activity in canine spontaneous neoplasms. Journal of Veterinary Medical Science. 1994, 56: 581-583.CrossRefPubMed
8.
go back to reference Verma U, Kapur MM, Laumas KR: Characterization of progesterone receptors and metabolism of progesterone in the normal and cancerous human mammary gland. Journal of Steroid Biochemistry. 1978, 9: 569-577. 10.1016/0022-4731(78)90124-3.CrossRefPubMed Verma U, Kapur MM, Laumas KR: Characterization of progesterone receptors and metabolism of progesterone in the normal and cancerous human mammary gland. Journal of Steroid Biochemistry. 1978, 9: 569-577. 10.1016/0022-4731(78)90124-3.CrossRefPubMed
9.
go back to reference Lloyd RV: Studies on the progesterone receptor content and steroid metabolism in normal and pathological human breast tissues. Journal of Clinical Endocrinology and Metabolism. 1979, 48: 585-593.CrossRefPubMed Lloyd RV: Studies on the progesterone receptor content and steroid metabolism in normal and pathological human breast tissues. Journal of Clinical Endocrinology and Metabolism. 1979, 48: 585-593.CrossRefPubMed
10.
go back to reference Wiebe John P., Muzia David, Hu Juncai, Szwajcer David, Hill Scott A., Seachrist Jennifer L.: The 4-pregnene and 5α-pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. Cancer Research. 2000, 60: 936-943.PubMed Wiebe John P., Muzia David, Hu Juncai, Szwajcer David, Hill Scott A., Seachrist Jennifer L.: The 4-pregnene and 5α-pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. Cancer Research. 2000, 60: 936-943.PubMed
11.
go back to reference Wiebe John P., Muzia D: The endogenous progesterone metabolite, 5α-pregnane-3,20-dione, decreases cell-substrate attachment, adhesion plaques, vinculin expression, and polymerized F-actin in MCF-7 breast cancer cells. Endocrine. 2001, 16: 7-14. 10.1385/ENDO:16:1:07.CrossRefPubMed Wiebe John P., Muzia D: The endogenous progesterone metabolite, 5α-pregnane-3,20-dione, decreases cell-substrate attachment, adhesion plaques, vinculin expression, and polymerized F-actin in MCF-7 breast cancer cells. Endocrine. 2001, 16: 7-14. 10.1385/ENDO:16:1:07.CrossRefPubMed
12.
go back to reference Weiler Peter J., Wiebe John P.: Plasma membrane receptors for the cancer-regulating progesterone metabolites, 5α-pregnane-3,20-dione and 3α-hydroxy-4-pregnen-20- one in MCF-7 breast cancer cells. Biochemical and Biophysical Resarch Communications. 2000, 272: 731-737. 10.1006/bbrc.2000.2847.CrossRef Weiler Peter J., Wiebe John P.: Plasma membrane receptors for the cancer-regulating progesterone metabolites, 5α-pregnane-3,20-dione and 3α-hydroxy-4-pregnen-20- one in MCF-7 breast cancer cells. Biochemical and Biophysical Resarch Communications. 2000, 272: 731-737. 10.1006/bbrc.2000.2847.CrossRef
13.
go back to reference Wiebe John P., Lewis Michael J.: Activity and expression of progesterone metabolizing 5α-reductase, 20α-hydroxysteroid oxidoreductase and 3α (b)-hydroxysteroid oxidoreductases in tumorigenic (MCF-7, MDA-MB-231, T-47D) and nontumorigenic (MCF-10A) human breast cancer cells. BMC Cancer. 2003, 3: 1-15. 10.1186/1471-2407-3-9.CrossRef Wiebe John P., Lewis Michael J.: Activity and expression of progesterone metabolizing 5α-reductase, 20α-hydroxysteroid oxidoreductase and 3α (b)-hydroxysteroid oxidoreductases in tumorigenic (MCF-7, MDA-MB-231, T-47D) and nontumorigenic (MCF-10A) human breast cancer cells. BMC Cancer. 2003, 3: 1-15. 10.1186/1471-2407-3-9.CrossRef
14.
go back to reference Ji Q, Chang L, VanDen Berg D, Stanczyk FZ, Stolz A: Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate. 2003, 54: 275-289. 10.1002/pros.10192.CrossRefPubMed Ji Q, Chang L, VanDen Berg D, Stanczyk FZ, Stolz A: Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate. 2003, 54: 275-289. 10.1002/pros.10192.CrossRefPubMed
15.
go back to reference Horwitz KB, Pike AW, Gonzales-Aller C, Fennessey PV: Progesterone metabolism in T47Dco human breast cancer cells - II. Intracellular metabolic path of progesterone and synthetic progestins. Journal of Steroid Biochemistry. 1986, 25: 911-916. 10.1016/0022-4731(86)90323-7.CrossRefPubMed Horwitz KB, Pike AW, Gonzales-Aller C, Fennessey PV: Progesterone metabolism in T47Dco human breast cancer cells - II. Intracellular metabolic path of progesterone and synthetic progestins. Journal of Steroid Biochemistry. 1986, 25: 911-916. 10.1016/0022-4731(86)90323-7.CrossRefPubMed
16.
go back to reference Andersson S, Russell DW: Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases. Proceedings of the National Academy of Sciences USA. 1990, 87: 3640-3644.CrossRef Andersson S, Russell DW: Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases. Proceedings of the National Academy of Sciences USA. 1990, 87: 3640-3644.CrossRef
17.
go back to reference Russell DW, Wilson JD: Steroid 5α-reductase: two genes/two enzymes. Annual Review of Biochemistry. 1994, 63: 25-61.CrossRefPubMed Russell DW, Wilson JD: Steroid 5α-reductase: two genes/two enzymes. Annual Review of Biochemistry. 1994, 63: 25-61.CrossRefPubMed
18.
go back to reference Russell DW, Berman DM, Bryant JT, Cala KM, Davis DL, Landrum CP, Prihoda JS, Silver RI, Thigpen AE, Wigley WC: The molecular genetics of steroid 5α-reductases. Recent Progress in Hormone Research. 1994, 49: 275-284.PubMed Russell DW, Berman DM, Bryant JT, Cala KM, Davis DL, Landrum CP, Prihoda JS, Silver RI, Thigpen AE, Wigley WC: The molecular genetics of steroid 5α-reductases. Recent Progress in Hormone Research. 1994, 49: 275-284.PubMed
19.
go back to reference Thigpen AE, Silver RI, Guileyardo JM, Casey M,L,, McConnell JD, Russell DW: Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression. Journla of Clinical Investigations. 1993, 92: 903-910.CrossRef Thigpen AE, Silver RI, Guileyardo JM, Casey M,L,, McConnell JD, Russell DW: Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression. Journla of Clinical Investigations. 1993, 92: 903-910.CrossRef
20.
go back to reference Suzuki T, Darnel AD, Akahira JI, Ariga N, Ogawa S, Kaneko C, Takeyama J, Moriya T, Sasano H: 5α-reductases in human breast carcinoma: possible modulator of in situ androgenic actions. Journal of Clinical Endocrinology and Metabolism. 2001, 86: 2250-2257. 10.1210/jc.86.5.2250.PubMed Suzuki T, Darnel AD, Akahira JI, Ariga N, Ogawa S, Kaneko C, Takeyama J, Moriya T, Sasano H: 5α-reductases in human breast carcinoma: possible modulator of in situ androgenic actions. Journal of Clinical Endocrinology and Metabolism. 2001, 86: 2250-2257. 10.1210/jc.86.5.2250.PubMed
21.
go back to reference Jin Y, Penning TM: Steroid 5α-reductases and 3α-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism. Best Practice Research Clinical Endocrinology and Metabolism. 2001, 15: 79-94. 10.1053/beem.2001.0120.CrossRefPubMed Jin Y, Penning TM: Steroid 5α-reductases and 3α-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism. Best Practice Research Clinical Endocrinology and Metabolism. 2001, 15: 79-94. 10.1053/beem.2001.0120.CrossRefPubMed
22.
go back to reference Dufort I, Soucy P, Labrie F, Luu-The V: Molecular cloning of human type 3 3α-hydroxysteroid dehydrogenase that differs from 20α-hydroxysteroid dehydrogenase by seven amino acids. Biochemical and Biophysical Resarch Communications. 1996, 228: 474-479. 10.1006/bbrc.1996.1684.CrossRef Dufort I, Soucy P, Labrie F, Luu-The V: Molecular cloning of human type 3 3α-hydroxysteroid dehydrogenase that differs from 20α-hydroxysteroid dehydrogenase by seven amino acids. Biochemical and Biophysical Resarch Communications. 1996, 228: 474-479. 10.1006/bbrc.1996.1684.CrossRef
23.
go back to reference Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V: Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase. Endocrinology. 1999, 140: 568-574. 10.1210/en.140.2.568.PubMed Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V: Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase. Endocrinology. 1999, 140: 568-574. 10.1210/en.140.2.568.PubMed
24.
go back to reference Dufort I, Labrie F, Luu-The V: Human types 1 and 3 3α-hydroxysteroid dehydrogenases: differential lability and tissue distribution. Journal of Clinical Endocrinology and Metabolism. 2001, 86: 841-846. 10.1210/jc.86.2.841.PubMed Dufort I, Labrie F, Luu-The V: Human types 1 and 3 3α-hydroxysteroid dehydrogenases: differential lability and tissue distribution. Journal of Clinical Endocrinology and Metabolism. 2001, 86: 841-846. 10.1210/jc.86.2.841.PubMed
25.
go back to reference Stolz A, Hammond L, Lou H, Takikawa H, Ronk M, Shively JE: cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. Journal of Biological Chemistry. 1993, 268: 10448-10457.PubMed Stolz A, Hammond L, Lou H, Takikawa H, Ronk M, Shively JE: cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. Journal of Biological Chemistry. 1993, 268: 10448-10457.PubMed
26.
go back to reference Penning TM: Molecular endocrinology of hydroxysteroid dehydrogenases. Endocrine Reviews. 1997, 18: 281-305. 10.1210/er.18.3.281.PubMed Penning TM: Molecular endocrinology of hydroxysteroid dehydrogenases. Endocrine Reviews. 1997, 18: 281-305. 10.1210/er.18.3.281.PubMed
27.
go back to reference Khanna M, Qin KN, Wang RW, Cheng KC: Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3α-hydroxysteroid dehydrogenases. Journal of Biological Chemistry. 1995, 270: 20162-20168. 10.1074/jbc.270.34.20162.CrossRefPubMed Khanna M, Qin KN, Wang RW, Cheng KC: Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3α-hydroxysteroid dehydrogenases. Journal of Biological Chemistry. 1995, 270: 20162-20168. 10.1074/jbc.270.34.20162.CrossRefPubMed
28.
go back to reference Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K: Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1 - AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochemical Journal. 2000, 351: 67-77. 10.1042/0264-6021:3510067.PubMedPubMedCentral Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K: Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1 - AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochemical Journal. 2000, 351: 67-77. 10.1042/0264-6021:3510067.PubMedPubMedCentral
29.
go back to reference Zhang Y, Dufort I, Rheault P, Luu-The V: Characterization of a human 20α-hydroxysteroid dehydrogenase. Journal of Molecular Endocrinology. 2000, 25: 221-228. 10.1016/S0303-7207(99)00208-7.CrossRefPubMed Zhang Y, Dufort I, Rheault P, Luu-The V: Characterization of a human 20α-hydroxysteroid dehydrogenase. Journal of Molecular Endocrinology. 2000, 25: 221-228. 10.1016/S0303-7207(99)00208-7.CrossRefPubMed
30.
go back to reference Ji Q, Aoyama C, Nien Y-D, Chen P, Liu P, Stolz A: Reduced expression of human 20α-hydroxysteroid dehydrogenase (20α-HSD) in human breast cancer cases [abstract]. Endocrine Society Annual Meeting Abstracts. 2003, 2003: P2,443- Ji Q, Aoyama C, Nien Y-D, Chen P, Liu P, Stolz A: Reduced expression of human 20α-hydroxysteroid dehydrogenase (20α-HSD) in human breast cancer cases [abstract]. Endocrine Society Annual Meeting Abstracts. 2003, 2003: P2,443-
31.
go back to reference Hardy DO, Ge RS, Catterall JF, Hou YT, Penning TM, Hardy MP: Identification of the oxidative 3α-hydroxysteroid dehydrogenase activity of rat Leydig cells as type II retinol dehydrogenase. Endocrinology. 2000, 141: 1608-1617. 10.1210/en.141.5.1608.PubMed Hardy DO, Ge RS, Catterall JF, Hou YT, Penning TM, Hardy MP: Identification of the oxidative 3α-hydroxysteroid dehydrogenase activity of rat Leydig cells as type II retinol dehydrogenase. Endocrinology. 2000, 141: 1608-1617. 10.1210/en.141.5.1608.PubMed
32.
go back to reference Campbell SMC, Wiebe JP: Stimulation of spermatocyte development in prepubertal rats by the Sertoli cell steroid, 3α-hydroxy-4-pregnen-20-one. Biology of Reproduction. 1989, 40: 897-905.CrossRefPubMed Campbell SMC, Wiebe JP: Stimulation of spermatocyte development in prepubertal rats by the Sertoli cell steroid, 3α-hydroxy-4-pregnen-20-one. Biology of Reproduction. 1989, 40: 897-905.CrossRefPubMed
33.
go back to reference Wood PH, Wiebe JP: Selective suppression of follicle-stimulating hormone secretion in anterior pituitary cells by the gonadal steroid, 3α-hydroxy-4-pregnen-20-one (3αHP). Endocrinology. 1989, 125: 41-48.CrossRefPubMed Wood PH, Wiebe JP: Selective suppression of follicle-stimulating hormone secretion in anterior pituitary cells by the gonadal steroid, 3α-hydroxy-4-pregnen-20-one (3αHP). Endocrinology. 1989, 125: 41-48.CrossRefPubMed
34.
go back to reference Dhanvantari S, Wiebe JP: Suppression of follicle-stimulating hormone by the gonadal- and neurosteroid 3α-hydroxy-4-pregnen-20-one involves actions at the level of the gonadotrope membrane/calcium channel. Endocrinology. 1994, 134: 371-376. 10.1210/en.134.1.371.PubMed Dhanvantari S, Wiebe JP: Suppression of follicle-stimulating hormone by the gonadal- and neurosteroid 3α-hydroxy-4-pregnen-20-one involves actions at the level of the gonadotrope membrane/calcium channel. Endocrinology. 1994, 134: 371-376. 10.1210/en.134.1.371.PubMed
35.
go back to reference Wiebe JP, Dhanvantari Savita, Watson PH, Huang Y: Suppression in gonadotropes of gonadotropin-releasing hormone-stimulated follicle-stimulating hormone release by the gonadal- and neurosteroid 3α-hydroxy-4-pregnen-20-one involves cytosolic calcium. Endocrinology. 1994, 134: 377-382. 10.1210/en.134.1.377.PubMed Wiebe JP, Dhanvantari Savita, Watson PH, Huang Y: Suppression in gonadotropes of gonadotropin-releasing hormone-stimulated follicle-stimulating hormone release by the gonadal- and neurosteroid 3α-hydroxy-4-pregnen-20-one involves cytosolic calcium. Endocrinology. 1994, 134: 377-382. 10.1210/en.134.1.377.PubMed
36.
go back to reference Beck Christine A., Wolfe M, Murphy LD, Wiebe JP: Acute, nongenomic actions of the neuroactive gonadal steroid, 3α-hydroxy-4-pregnen-20-one (3αHP), on FSH release in perifused rat anterior pituitary cells. Endocrine. 1997, 6: 221-229.CrossRefPubMed Beck Christine A., Wolfe M, Murphy LD, Wiebe JP: Acute, nongenomic actions of the neuroactive gonadal steroid, 3α-hydroxy-4-pregnen-20-one (3αHP), on FSH release in perifused rat anterior pituitary cells. Endocrine. 1997, 6: 221-229.CrossRefPubMed
37.
go back to reference Wiebe JP: Nongenomic actions of steroids on gonadotropin release. Recent Progress in Hormone Research. 1997, 52: 71-101.PubMed Wiebe JP: Nongenomic actions of steroids on gonadotropin release. Recent Progress in Hormone Research. 1997, 52: 71-101.PubMed
38.
go back to reference Wiebe John P., Kavaliers Martin: Analgesic effects of the putative FSH-suppressing gonadal steroid, 3α-hydroxy-4-pregnen-20-one: possible modes of action. Brain Research. 1988, 461: 150-157. 10.1016/0006-8993(88)90733-0.CrossRefPubMed Wiebe John P., Kavaliers Martin: Analgesic effects of the putative FSH-suppressing gonadal steroid, 3α-hydroxy-4-pregnen-20-one: possible modes of action. Brain Research. 1988, 461: 150-157. 10.1016/0006-8993(88)90733-0.CrossRefPubMed
39.
go back to reference Kavaliers Martin, Wiebe John P., Galea LAM: Reduction of predator-induced anxiety in mice by the neurosteroid 3α-hydroxy-4-pregnen-20-one (3αHP). Brain Research. 1994, 645: 325-329. 10.1016/0006-8993(94)91667-5.CrossRefPubMed Kavaliers Martin, Wiebe John P., Galea LAM: Reduction of predator-induced anxiety in mice by the neurosteroid 3α-hydroxy-4-pregnen-20-one (3αHP). Brain Research. 1994, 645: 325-329. 10.1016/0006-8993(94)91667-5.CrossRefPubMed
Metadata
Title
Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma
Authors
Michael J Lewis
John P Wiebe
J Godfrey Heathcote
Publication date
01-12-2004
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2004
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-4-27

Other articles of this Issue 1/2004

BMC Cancer 1/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine