Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine

Authors: Tidarat Nhukeaw, Pornvichai Temboot, Kanidtha Hansongnern, Adisorn Ratanaphan

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine.

Methods

Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination.

Results

HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3 ubiquitin ligase activity.

Conclusions

This study has revealed the ability of ruthenium complexes to inhibit cell proliferation, induce cell cycle progression and apoptosis. Ruthenium treatment upregulated the marker genes involved in apoptosis and cell cycle progression while it downregulated BRCA1 mRNA and replication of HCC1937 cells. Our results could provide an alternative approach to finding effective therapeutic ruthenium-based agents with promising anticancer activity, and demonstrated that the BRCA1 RING domain protein was a promising therapeutic target for breast cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cleator S, Heller W, Coombes RC: Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007, 8: 235-244. 10.1016/S1470-2045(07)70074-8.CrossRefPubMed Cleator S, Heller W, Coombes RC: Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007, 8: 235-244. 10.1016/S1470-2045(07)70074-8.CrossRefPubMed
2.
go back to reference Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffreyk SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge E, Pergamenschikov A, Williams C, Zhu SX, Lùnning PE, Bùrresen-Dale A-L, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093.CrossRefPubMed Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffreyk SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge E, Pergamenschikov A, Williams C, Zhu SX, Lùnning PE, Bùrresen-Dale A-L, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093.CrossRefPubMed
3.
go back to reference Cleere DW: Triple-negative breast cancer: a clinical update. Commun Oncol. 2010, 7: 203-211. 10.1016/S1548-5315(11)70394-1.CrossRef Cleere DW: Triple-negative breast cancer: a clinical update. Commun Oncol. 2010, 7: 203-211. 10.1016/S1548-5315(11)70394-1.CrossRef
4.
go back to reference Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D’Incalci M, Piccolo S, Veronesi A, Zambelli A, Sal GD, Leo AD: Targeting triple negative breast cancer: Is p53 the answer?. Cancer Treat Rev. 2013, 39: 541-550. 10.1016/j.ctrv.2012.12.001.CrossRefPubMed Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D’Incalci M, Piccolo S, Veronesi A, Zambelli A, Sal GD, Leo AD: Targeting triple negative breast cancer: Is p53 the answer?. Cancer Treat Rev. 2013, 39: 541-550. 10.1016/j.ctrv.2012.12.001.CrossRefPubMed
5.
go back to reference Hugh J, Hanson J, Cheang MCU, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, Magherini E, Mackey J, Martin M, Vogel C: Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 2009, 27: 1168-1176. 10.1200/JCO.2008.18.1024.CrossRefPubMedPubMedCentral Hugh J, Hanson J, Cheang MCU, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, Magherini E, Mackey J, Martin M, Vogel C: Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 2009, 27: 1168-1176. 10.1200/JCO.2008.18.1024.CrossRefPubMedPubMedCentral
6.
go back to reference Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008, 26: 1275-1281. 10.1200/JCO.2007.14.4147.CrossRefPubMed Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008, 26: 1275-1281. 10.1200/JCO.2007.14.4147.CrossRefPubMed
7.
8.
go back to reference Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong C-O, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE: Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010, 28: 1145-1153. 10.1200/JCO.2009.22.4725.CrossRefPubMedPubMedCentral Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong C-O, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE: Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010, 28: 1145-1153. 10.1200/JCO.2009.22.4725.CrossRefPubMedPubMedCentral
9.
go back to reference Koshy N, Quispe D, Shi R, Mansour R, Burton GV: Cisplatin-gemcitabine therapy in metastatic breast cancer: Improved outcome in triple-negative breast cancer patients compared to non-triple negative patients. Breast. 2010, 19: 246-248. 10.1016/j.breast.2010.02.003.CrossRefPubMed Koshy N, Quispe D, Shi R, Mansour R, Burton GV: Cisplatin-gemcitabine therapy in metastatic breast cancer: Improved outcome in triple-negative breast cancer patients compared to non-triple negative patients. Breast. 2010, 19: 246-248. 10.1016/j.breast.2010.02.003.CrossRefPubMed
10.
go back to reference Keppler BK: Metal Complexes in Cancer Chemotherapy. 1993, New York, NY, USA: VCH Publishers, 1-8. 1 Keppler BK: Metal Complexes in Cancer Chemotherapy. 1993, New York, NY, USA: VCH Publishers, 1-8. 1
11.
go back to reference Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T: Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008, 68: 2581-2586. 10.1158/0008-5472.CAN-08-0088.CrossRefPubMedPubMedCentral Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T: Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008, 68: 2581-2586. 10.1158/0008-5472.CAN-08-0088.CrossRefPubMedPubMedCentral
12.
go back to reference Allardyce CS, Dyson PJ: Ruthenium in medicine: current clinical uses and future prospects. Platinum Metals Rev. 2001, 45: 62-69. Allardyce CS, Dyson PJ: Ruthenium in medicine: current clinical uses and future prospects. Platinum Metals Rev. 2001, 45: 62-69.
13.
go back to reference Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH: A phase I and pharmacological study with imidazolium-trans-DMSO-imidazoletetrachloro-ruthenate, a novel ruthenium anticancer agent. Clin Cancer Res. 2004, 10: 3717-3727. 10.1158/1078-0432.CCR-03-0746.CrossRefPubMed Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH: A phase I and pharmacological study with imidazolium-trans-DMSO-imidazoletetrachloro-ruthenate, a novel ruthenium anticancer agent. Clin Cancer Res. 2004, 10: 3717-3727. 10.1158/1078-0432.CCR-03-0746.CrossRefPubMed
14.
go back to reference Sava G, Gagliardi R, Bergamo A, Allessio E, Mestroni G: Treatment of metastases of solid mouse tumors by NAMI-A: comparison with cisplatin, cyclophosphamide and dacarbazine. Anticancer Res. 1999, 19: 969-972.PubMed Sava G, Gagliardi R, Bergamo A, Allessio E, Mestroni G: Treatment of metastases of solid mouse tumors by NAMI-A: comparison with cisplatin, cyclophosphamide and dacarbazine. Anticancer Res. 1999, 19: 969-972.PubMed
16.
go back to reference Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W, Lackinger L, Keppler BK, Marian B: Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol. 2005, 131: 101-110. 10.1007/s00432-004-0617-0.CrossRefPubMed Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W, Lackinger L, Keppler BK, Marian B: Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol. 2005, 131: 101-110. 10.1007/s00432-004-0617-0.CrossRefPubMed
17.
go back to reference Chen TF, Liu YN, Zheng WJ, Liu J, Wong YS: Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells. Inorg Chem. 2010, 49: 6366-6368. 10.1021/ic100277w.CrossRefPubMed Chen TF, Liu YN, Zheng WJ, Liu J, Wong YS: Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells. Inorg Chem. 2010, 49: 6366-6368. 10.1021/ic100277w.CrossRefPubMed
18.
go back to reference Ratanaphan A, Nhukeaw T, Temboot P, Hansongnern K: DNA-binding properties of ruthenium(II) complexes with the bidentate ligand 5-chloro-2-(phenylazo)pyridine. Transition Met Chem. 2012, 37: 207-214. 10.1007/s11243-012-9576-5.CrossRef Ratanaphan A, Nhukeaw T, Temboot P, Hansongnern K: DNA-binding properties of ruthenium(II) complexes with the bidentate ligand 5-chloro-2-(phenylazo)pyridine. Transition Met Chem. 2012, 37: 207-214. 10.1007/s11243-012-9576-5.CrossRef
19.
go back to reference Huang H-L, Li Z-Z, Liang Z-H, Yao J-H, Liu Y-J: Synthesis, cellular uptake, apopotosis, cytotoxicity, cell cycle arrest, interaction with DNA and antioxidant activity of ruthenium (II) complexes. Eur J Med Chem. 2011, 46: 3282-3290. 10.1016/j.ejmech.2011.04.049.CrossRefPubMed Huang H-L, Li Z-Z, Liang Z-H, Yao J-H, Liu Y-J: Synthesis, cellular uptake, apopotosis, cytotoxicity, cell cycle arrest, interaction with DNA and antioxidant activity of ruthenium (II) complexes. Eur J Med Chem. 2011, 46: 3282-3290. 10.1016/j.ejmech.2011.04.049.CrossRefPubMed
20.
go back to reference Chakree K, Ovatlarnporn C, Dyson PJ, Ratanaphan A: Altered DNA binding and amplification of human breast cancer suppressor gene BRCA1 induced by a novel antitumor compound, [Ru(η 6-p-phenylethacrynate)Cl2(pta)]. Int J Mol Sci. 2012, 13: 13183-13202. 10.3390/ijms131013183.CrossRefPubMedPubMedCentral Chakree K, Ovatlarnporn C, Dyson PJ, Ratanaphan A: Altered DNA binding and amplification of human breast cancer suppressor gene BRCA1 induced by a novel antitumor compound, [Ru(η 6-p-phenylethacrynate)Cl2(pta)]. Int J Mol Sci. 2012, 13: 13183-13202. 10.3390/ijms131013183.CrossRefPubMedPubMedCentral
21.
go back to reference Gava B, Zorzet S, Spessotto P, Cocchietto M, Sava G: Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide tetrachloro-ruthenate and down-regulation of tumor cell invasion. J Pharmacol Exp Ther. 2006, 317: 284-291.CrossRefPubMed Gava B, Zorzet S, Spessotto P, Cocchietto M, Sava G: Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide tetrachloro-ruthenate and down-regulation of tumor cell invasion. J Pharmacol Exp Ther. 2006, 317: 284-291.CrossRefPubMed
22.
go back to reference Chatterjee S, Kundu S, Bhattacharyya A, Hartinger CG, Dyson PJ: The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J Biol Inorg Chem. 2008, 13: 1149-1155. 10.1007/s00775-008-0400-9.CrossRefPubMed Chatterjee S, Kundu S, Bhattacharyya A, Hartinger CG, Dyson PJ: The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J Biol Inorg Chem. 2008, 13: 1149-1155. 10.1007/s00775-008-0400-9.CrossRefPubMed
23.
go back to reference Trynda-Lemiesz L: Interaction of an anticancer ruthenium complex HInd[RuInd2Cl4] with cytochrome c. Acta Biochim Pol. 2004, 51: 199-205.PubMed Trynda-Lemiesz L: Interaction of an anticancer ruthenium complex HInd[RuInd2Cl4] with cytochrome c. Acta Biochim Pol. 2004, 51: 199-205.PubMed
24.
go back to reference Atipairin A, Canyuk B, Ratanaphan A: The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs. Breast Cancer Res Treat. 2011, 126: 203-209. 10.1007/s10549-010-1182-7.CrossRefPubMed Atipairin A, Canyuk B, Ratanaphan A: The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs. Breast Cancer Res Treat. 2011, 126: 203-209. 10.1007/s10549-010-1182-7.CrossRefPubMed
25.
go back to reference Ruffner H, Jaozeiro CA, Hemmati D, Hunter T, Verma IM: Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA. 2001, 98: 5134-5139. 10.1073/pnas.081068398.CrossRefPubMedPubMedCentral Ruffner H, Jaozeiro CA, Hemmati D, Hunter T, Verma IM: Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA. 2001, 98: 5134-5139. 10.1073/pnas.081068398.CrossRefPubMedPubMedCentral
26.
go back to reference Koch RB, Norring NL: Fractionation of olfactory tissue homogenates. Isolation of a concentrated plasma membrane fraction. J Neurochem. 1969, 16: 145-157. 10.1111/j.1471-4159.1969.tb05933.x.CrossRefPubMed Koch RB, Norring NL: Fractionation of olfactory tissue homogenates. Isolation of a concentrated plasma membrane fraction. J Neurochem. 1969, 16: 145-157. 10.1111/j.1471-4159.1969.tb05933.x.CrossRefPubMed
27.
go back to reference Livak KJ, Schmittgen DT: Analysis of relative gene expression data using real-time quantitative PCR and the 2 -∆∆C T Method. Method. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRef Livak KJ, Schmittgen DT: Analysis of relative gene expression data using real-time quantitative PCR and the 2 -∆∆C T Method. Method. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRef
29.
go back to reference Atipairin A, Canyuk B, Ratanaphan A: Cisplatin affects the conformation of apo form, not holo form, of BRCA1 RING finger domain and confers thermal stability. Chem Biodivers. 2010, 7: 1949-1967. 10.1002/cbdv.200900308.CrossRefPubMed Atipairin A, Canyuk B, Ratanaphan A: Cisplatin affects the conformation of apo form, not holo form, of BRCA1 RING finger domain and confers thermal stability. Chem Biodivers. 2010, 7: 1949-1967. 10.1002/cbdv.200900308.CrossRefPubMed
30.
go back to reference Ratanaphan A, Temboot P, Dyson PJ: In vitro ruthenation of human breast cancer suppressor gene 1 (BRCA1) by the antimetastasis compound RAPTA-C and its analogue carboRAPTA-C. Chem Biodivers. 2010, 7: 1290-1302. 10.1002/cbdv.200900288.CrossRefPubMed Ratanaphan A, Temboot P, Dyson PJ: In vitro ruthenation of human breast cancer suppressor gene 1 (BRCA1) by the antimetastasis compound RAPTA-C and its analogue carboRAPTA-C. Chem Biodivers. 2010, 7: 1290-1302. 10.1002/cbdv.200900288.CrossRefPubMed
31.
go back to reference Amir E, Seruga B, Serrano R, Ocana A: Targeting DNA repair in breast cancer: a clinical and translational update. Cancer Treat Rev. 2010, 36: 557-565. 10.1016/j.ctrv.2010.03.006.CrossRefPubMed Amir E, Seruga B, Serrano R, Ocana A: Targeting DNA repair in breast cancer: a clinical and translational update. Cancer Treat Rev. 2010, 36: 557-565. 10.1016/j.ctrv.2010.03.006.CrossRefPubMed
32.
go back to reference Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA: DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008, 8: 193-204. 10.1038/nrc2342.CrossRefPubMed Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA: DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008, 8: 193-204. 10.1038/nrc2342.CrossRefPubMed
33.
go back to reference Lieberman HB: DNA repair and response proteins as targets for cancer therapy. Curr Med Chem. 2008, 15: 360-367. 10.2174/092986708783497328.CrossRefPubMed Lieberman HB: DNA repair and response proteins as targets for cancer therapy. Curr Med Chem. 2008, 15: 360-367. 10.2174/092986708783497328.CrossRefPubMed
34.
go back to reference Powell SN, Bindra RS: Targeting the DNA damage response for cancer therapy. DNA Repair. 2009, 8: 1153-1165. 10.1016/j.dnarep.2009.04.011.CrossRefPubMed Powell SN, Bindra RS: Targeting the DNA damage response for cancer therapy. DNA Repair. 2009, 8: 1153-1165. 10.1016/j.dnarep.2009.04.011.CrossRefPubMed
35.
go back to reference Zhu Y, Hub Y, Liu W: Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev. 2009, 35: 590-596. 10.1016/j.ctrv.2009.06.005.CrossRefPubMed Zhu Y, Hub Y, Liu W: Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev. 2009, 35: 590-596. 10.1016/j.ctrv.2009.06.005.CrossRefPubMed
36.
go back to reference Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NMB, Jackson SP, Smith GCM, Ashworth A: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434: 917-921. 10.1038/nature03445.CrossRefPubMed Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NMB, Jackson SP, Smith GCM, Ashworth A: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434: 917-921. 10.1038/nature03445.CrossRefPubMed
37.
go back to reference Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP: The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 2004, 96: 1659-1668. 10.1093/jnci/djh312.CrossRefPubMed Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP: The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 2004, 96: 1659-1668. 10.1093/jnci/djh312.CrossRefPubMed
38.
go back to reference Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD: Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res. 2010, 70: 988-995. 10.1158/0008-5472.CAN-09-2850.CrossRefPubMedPubMedCentral Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD: Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res. 2010, 70: 988-995. 10.1158/0008-5472.CAN-09-2850.CrossRefPubMedPubMedCentral
39.
go back to reference Wei L, Lan L, Hong Z, Yasui A, Ishioka C, Chiba N: Rapid recruitment of BRCA1 to DNA double-strand breaks is dependent on its association with Ku80. Mol Cell Biol. 2008, 28: 7380-7393. 10.1128/MCB.01075-08.CrossRefPubMedPubMedCentral Wei L, Lan L, Hong Z, Yasui A, Ishioka C, Chiba N: Rapid recruitment of BRCA1 to DNA double-strand breaks is dependent on its association with Ku80. Mol Cell Biol. 2008, 28: 7380-7393. 10.1128/MCB.01075-08.CrossRefPubMedPubMedCentral
40.
go back to reference Sakai-Kato K, Ishiguro A, Mikoshiba K, Aruga J, Utsunomiya-Tate N: CD spectra show the relational style between Zic-, Gli-, Glis-zinc finger protein and DNA. Biochim Biophys Acta. 2008, 1784: 1011-1019. 10.1016/j.bbapap.2008.01.013.CrossRefPubMed Sakai-Kato K, Ishiguro A, Mikoshiba K, Aruga J, Utsunomiya-Tate N: CD spectra show the relational style between Zic-, Gli-, Glis-zinc finger protein and DNA. Biochim Biophys Acta. 2008, 1784: 1011-1019. 10.1016/j.bbapap.2008.01.013.CrossRefPubMed
41.
go back to reference Sakai-Kato K, Umezawa Y, Mikoshiba K, Aruga J, Utsunomiya-Tate N: Stability of folding structure of Zic zinc finger proteins. Biochem Biophys Res Commun. 2009, 384: 362-365. 10.1016/j.bbrc.2009.04.151.CrossRefPubMed Sakai-Kato K, Umezawa Y, Mikoshiba K, Aruga J, Utsunomiya-Tate N: Stability of folding structure of Zic zinc finger proteins. Biochem Biophys Res Commun. 2009, 384: 362-365. 10.1016/j.bbrc.2009.04.151.CrossRefPubMed
42.
go back to reference Sirohi B, Arnedos M, Popat S, Ashley S, Nerurkar A, Walsh G, Johnston S, Smith IE: Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol. 2008, 19: 1847-1852. 10.1093/annonc/mdn395.CrossRefPubMed Sirohi B, Arnedos M, Popat S, Ashley S, Nerurkar A, Walsh G, Johnston S, Smith IE: Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol. 2008, 19: 1847-1852. 10.1093/annonc/mdn395.CrossRefPubMed
43.
go back to reference Jakupec MA, Reisner E, Eichinger A, Pongratz M, Arion VB, Galanski M, Hartinger CG, Keppler BK: Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential. J Med Chem. 2005, 48: 2831-2837. 10.1021/jm0490742.CrossRefPubMed Jakupec MA, Reisner E, Eichinger A, Pongratz M, Arion VB, Galanski M, Hartinger CG, Keppler BK: Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential. J Med Chem. 2005, 48: 2831-2837. 10.1021/jm0490742.CrossRefPubMed
44.
go back to reference Ashworth A: A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008, 26: 3785-3790. 10.1200/JCO.2008.16.0812.CrossRefPubMed Ashworth A: A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008, 26: 3785-3790. 10.1200/JCO.2008.16.0812.CrossRefPubMed
45.
go back to reference Tan C, Lai S, Wu S, Hu S, Zhou L, Chen Y, Wang M, Zhu Y, Lian W, Peng W, Ji L, Xu A: Nuclear permeable ruthenium(II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J Med Chem. 2010, 53: 7613-7624. 10.1021/jm1009296.CrossRefPubMed Tan C, Lai S, Wu S, Hu S, Zhou L, Chen Y, Wang M, Zhu Y, Lian W, Peng W, Ji L, Xu A: Nuclear permeable ruthenium(II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J Med Chem. 2010, 53: 7613-7624. 10.1021/jm1009296.CrossRefPubMed
46.
go back to reference Huang HL, Liu YJ, Zeng CH, He LX, Wu FH: In vitro cytotoxicity, apoptosis, DNA-binding, and antioxidant activity studies of ruthenium (II) complexes. DNA Cell Biol. 2010, 29: 261-270. 10.1089/dna.2009.0979.CrossRefPubMed Huang HL, Liu YJ, Zeng CH, He LX, Wu FH: In vitro cytotoxicity, apoptosis, DNA-binding, and antioxidant activity studies of ruthenium (II) complexes. DNA Cell Biol. 2010, 29: 261-270. 10.1089/dna.2009.0979.CrossRefPubMed
47.
go back to reference Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G: In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. J Pharmacol Exp Ther. 1999, 289: 559-564.PubMed Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G: In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. J Pharmacol Exp Ther. 1999, 289: 559-564.PubMed
48.
go back to reference Biswas DK, Cruz AP, Gansberger E, Pardee AB: Epidermal growth factor-induced nuclear factor κB activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA. 2000, 97: 8542-8547. 10.1073/pnas.97.15.8542.CrossRefPubMedPubMedCentral Biswas DK, Cruz AP, Gansberger E, Pardee AB: Epidermal growth factor-induced nuclear factor κB activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA. 2000, 97: 8542-8547. 10.1073/pnas.97.15.8542.CrossRefPubMedPubMedCentral
49.
go back to reference Chatterjee S, Biondi I, Dyson PJ, Bhattacharyya A: A bifunctional organometallic ruthenium drug with multiple modes of inducing apoptosis. J Biol Inorg Chem. 2011, 16: 715-724. 10.1007/s00775-011-0772-0.CrossRefPubMed Chatterjee S, Biondi I, Dyson PJ, Bhattacharyya A: A bifunctional organometallic ruthenium drug with multiple modes of inducing apoptosis. J Biol Inorg Chem. 2011, 16: 715-724. 10.1007/s00775-011-0772-0.CrossRefPubMed
50.
51.
go back to reference Tassone P, Martino MTD, Ventura M, Pietragalla A, Cucinotto I, Calimeri T, Bulotta A, Neri P, Caraglia M, Tagliaferri P: Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther. 2009, 8: 648-653.CrossRefPubMed Tassone P, Martino MTD, Ventura M, Pietragalla A, Cucinotto I, Calimeri T, Bulotta A, Neri P, Caraglia M, Tagliaferri P: Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther. 2009, 8: 648-653.CrossRefPubMed
52.
go back to reference Burga LN, Hu H, Juvekar A, Tung NM, Troyan SL, Hofstatter EW, Wulf GM: Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Research. 2011, 13: R30-10.1186/bcr2850.CrossRefPubMedPubMedCentral Burga LN, Hu H, Juvekar A, Tung NM, Troyan SL, Hofstatter EW, Wulf GM: Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Research. 2011, 13: R30-10.1186/bcr2850.CrossRefPubMedPubMedCentral
53.
go back to reference Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe J-P, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, LinKuo W, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10: 515-527. 10.1016/j.ccr.2006.10.008.CrossRefPubMedPubMedCentral Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe J-P, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, LinKuo W, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10: 515-527. 10.1016/j.ccr.2006.10.008.CrossRefPubMedPubMedCentral
54.
go back to reference Ratanaphan A, Canyuk B, Wasiksiri S, Mahasawat P: In vitro platination of human breast cancer suppressor gene1 (BRCA1) by the anticancer drug carboplatin. Biochim Biophys Acta. 2005, 1725: 145-151. 10.1016/j.bbagen.2005.07.006.CrossRefPubMed Ratanaphan A, Canyuk B, Wasiksiri S, Mahasawat P: In vitro platination of human breast cancer suppressor gene1 (BRCA1) by the anticancer drug carboplatin. Biochim Biophys Acta. 2005, 1725: 145-151. 10.1016/j.bbagen.2005.07.006.CrossRefPubMed
55.
go back to reference Attardi LD, Lowe SW, Brugarolas J, Jack T: Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996, 15: 3693-3701.PubMedPubMedCentral Attardi LD, Lowe SW, Brugarolas J, Jack T: Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996, 15: 3693-3701.PubMedPubMedCentral
56.
go back to reference Gao Y, Zhu J, Zhang X, Wu Q, Jiang S, Liu Y, Hu Z, Liu B, Chen X: BRCA1 mRNA expression as a predictive and prognostic marker in advanced esophageal aquamous cell carcinoma treated with cisplatin-or docetaxel-based chemotherapy/chemoradiotherapy. PLoS One. 2013, 8: doi: 10.1371/journal.pone.0052589 Gao Y, Zhu J, Zhang X, Wu Q, Jiang S, Liu Y, Hu Z, Liu B, Chen X: BRCA1 mRNA expression as a predictive and prognostic marker in advanced esophageal aquamous cell carcinoma treated with cisplatin-or docetaxel-based chemotherapy/chemoradiotherapy. PLoS One. 2013, 8: doi: 10.1371/journal.pone.0052589
57.
go back to reference Husain A, He G, Venkatraman ES, Spriggs DR: BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 1998, 58: 1120-1123.PubMed Husain A, He G, Venkatraman ES, Spriggs DR: BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 1998, 58: 1120-1123.PubMed
58.
go back to reference Taron M, Rosell R, Felip E, Mendes P, Souglakos J, Ronco MS, Queralt C, Majo J, Sanchez JM, Sanchez JJ, Maestre J: BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet. 2004, 13: 2443-2449. 10.1093/hmg/ddh260.CrossRefPubMed Taron M, Rosell R, Felip E, Mendes P, Souglakos J, Ronco MS, Queralt C, Majo J, Sanchez JM, Sanchez JJ, Maestre J: BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet. 2004, 13: 2443-2449. 10.1093/hmg/ddh260.CrossRefPubMed
59.
go back to reference Font A, Taron M, Gago JL, Costa C, Sanchez JJ, Carroto C, Mora M, Celiz P, Rodríguez D, Gimenez-Capitan A, Quiroga V, Benlloch S, Ibarz L, Rosell R: BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol. 2011, 22: 139-144. 10.1093/annonc/mdq333.CrossRefPubMed Font A, Taron M, Gago JL, Costa C, Sanchez JJ, Carroto C, Mora M, Celiz P, Rodríguez D, Gimenez-Capitan A, Quiroga V, Benlloch S, Ibarz L, Rosell R: BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol. 2011, 22: 139-144. 10.1093/annonc/mdq333.CrossRefPubMed
60.
go back to reference Margeli M, Cirauqui B, Castella E, Tapia G, Costa C, Gimenez-Capitan A, Sanchez Ronco M, Benlloch S, Taron M, Rosell R: The Prognostic Value of BRCA1 mRNA Expression Levels Following Neoadjuvant Chemotherapy in Breast Cancer. PLoS One. 2010, 5: doi:10.1371/journal.pone.0009499 Margeli M, Cirauqui B, Castella E, Tapia G, Costa C, Gimenez-Capitan A, Sanchez Ronco M, Benlloch S, Taron M, Rosell R: The Prognostic Value of BRCA1 mRNA Expression Levels Following Neoadjuvant Chemotherapy in Breast Cancer. PLoS One. 2010, 5: doi:10.1371/journal.pone.0009499
61.
go back to reference Atipairin A, Canyuk B, Ratanaphan A: Substitution of aspartic acid with glutamic acid at position 67 of the BRCA1 RING domain retains ubiquitin ligase activity and zinc(II) binding with a reduced transition temperature. J Biol Inorg Chem. 2011, 16: 217-226. 10.1007/s00775-010-0718-y.CrossRefPubMed Atipairin A, Canyuk B, Ratanaphan A: Substitution of aspartic acid with glutamic acid at position 67 of the BRCA1 RING domain retains ubiquitin ligase activity and zinc(II) binding with a reduced transition temperature. J Biol Inorg Chem. 2011, 16: 217-226. 10.1007/s00775-010-0718-y.CrossRefPubMed
Metadata
Title
Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine
Authors
Tidarat Nhukeaw
Pornvichai Temboot
Kanidtha Hansongnern
Adisorn Ratanaphan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-73

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine