Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

MicroRNA-645, up-regulated in human adencarcinoma of gastric esophageal junction, inhibits apoptosis by targeting tumor suppressor IFIT2

Authors: Xiaoshan Feng, Ying Wang, Zhikun Ma, Ruina Yang, Shuo Liang, Mengxi Zhang, Shiyuan Song, Shuoguo Li, Gang Liu, Daiming Fan, Shegan Gao

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

An increasing body of evidence indicates that miRNAs have a critical role in carcinogenesis and cancer progression; however, the role of miRNAs in the tumorigenesis of adencarcinoma of gastric esophageal junction (AGEJ) remains largely unclear.

Methods

The SGC7901 and BGC-823 gastric cancer cell lines were used. The expressions of miR-645 and IFIT2 (Interferon-induced protein with tetratricopeptide repeats 2) were examined by qRT-PCR, The expressions of IFIT2 was examined by western blotting and immunohistochemistry assay. The cell apoptosis was determined by FACS. MiR-645 inhibitor, mimics and plasmid-IFIT2 transfections were performed to study the loss- and gain-function. Caspase-3/7 activity was examined by caspase-3/7 assay.

Results

In the present study, we have reported an increased expression of miR-645 in AGEJ clinical specimens compared with paired non-cancerous tissues. We also observed a significant miR-645 up-regulation in two gastric cancer (GC) cell lines, SGC7901 and BGC-823, which were used as cell models because there was no available AGEJ cell lines established to date. We found that inhibition of miR-645 could sensitize dramatically SGC7901 and BGC-823 cells to both serum starvation– and chemotherapeutic drug–induced apoptosis by up-regulating IFIT2, a mediator of apoptosis via a mitochondrial pathway, with a potential binding site for miR-645 in its mRNA’s 3′UTR. Further investigation exhibited that IFIT2 expression decreases in SGC7901 and BGC-823 cells and AGEJ tissues. IFIT2 ectopic expression leads to promotion of cell apoptosis, indicating that IFIT2 may function as a suppressor in the development of AGEJ. Furthermore, inhibition of miR-645 induces up-regulation of IFIT2 and increased caspase-3/7 activity compared with control groups.

Conclusions

Our data suggest that miR-645 functions as an oncogene in human AGEJ by, at least partially through, targeting IFIT2.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vaughan TL, Davis S, Kristal A, Thomas DB: Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 1995, 4 (2): 85-92. Vaughan TL, Davis S, Kristal A, Thomas DB: Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 1995, 4 (2): 85-92.
2.
go back to reference Chow W-H, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC: Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1998, 90 (2): 150-155. 10.1093/jnci/90.2.150.CrossRefPubMed Chow W-H, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC: Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1998, 90 (2): 150-155. 10.1093/jnci/90.2.150.CrossRefPubMed
3.
go back to reference Kubo A, Corley DA: Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2006, 15 (5): 872-878. 10.1158/1055-9965.EPI-05-0860.CrossRef Kubo A, Corley DA: Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2006, 15 (5): 872-878. 10.1158/1055-9965.EPI-05-0860.CrossRef
4.
go back to reference Islami F, Sheikhattari P, Ren J, Kamangar F: Gastric atrophy and risk of oesophageal cancer and gastric cardia adenocarcinoma—a systematic review and meta-analysis. Ann Oncol. 2011, 22 (4): 754-760. 10.1093/annonc/mdq411.CrossRefPubMed Islami F, Sheikhattari P, Ren J, Kamangar F: Gastric atrophy and risk of oesophageal cancer and gastric cardia adenocarcinoma—a systematic review and meta-analysis. Ann Oncol. 2011, 22 (4): 754-760. 10.1093/annonc/mdq411.CrossRefPubMed
5.
go back to reference Devesa SS, Blot WJ, Fraumeni JF: Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998, 83 (10): 2049-2053. 10.1002/(SICI)1097-0142(19981115)83:10<2049::AID-CNCR1>3.0.CO;2-2.CrossRefPubMed Devesa SS, Blot WJ, Fraumeni JF: Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998, 83 (10): 2049-2053. 10.1002/(SICI)1097-0142(19981115)83:10<2049::AID-CNCR1>3.0.CO;2-2.CrossRefPubMed
6.
go back to reference Powell J, McConkey C: Increasing incidence of adenocarcinoma of the gastric cardia and adjacent sites. Br J Cancer. 1990, 62 (3): 440-10.1038/bjc.1990.314.CrossRefPubMedPubMedCentral Powell J, McConkey C: Increasing incidence of adenocarcinoma of the gastric cardia and adjacent sites. Br J Cancer. 1990, 62 (3): 440-10.1038/bjc.1990.314.CrossRefPubMedPubMedCentral
7.
go back to reference Lagergren J, Bergström R, Nyrén O: Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med. 1999, 130 (11): 883-890. 10.7326/0003-4819-130-11-199906010-00003.CrossRefPubMed Lagergren J, Bergström R, Nyrén O: Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med. 1999, 130 (11): 883-890. 10.7326/0003-4819-130-11-199906010-00003.CrossRefPubMed
8.
go back to reference Gammon MD, Ahsan H, Schoenberg JB, West AB, Rotterdam H, Niwa S, Blot WJ, Risch HA, Dubrow R, Mayne ST: Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1997, 89 (17): 1277-1284. 10.1093/jnci/89.17.1277.CrossRefPubMed Gammon MD, Ahsan H, Schoenberg JB, West AB, Rotterdam H, Niwa S, Blot WJ, Risch HA, Dubrow R, Mayne ST: Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1997, 89 (17): 1277-1284. 10.1093/jnci/89.17.1277.CrossRefPubMed
9.
go back to reference Turati F, Tramacere I, La Vecchia C, Negri E: A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol. 2013, 24 (3): 609-617. 10.1093/annonc/mds244.CrossRefPubMed Turati F, Tramacere I, La Vecchia C, Negri E: A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol. 2013, 24 (3): 609-617. 10.1093/annonc/mds244.CrossRefPubMed
10.
go back to reference Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34 (suppl 1): D140-D144.CrossRefPubMed Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34 (suppl 1): D140-D144.CrossRefPubMed
11.
go back to reference Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M: Combinatorial microRNA target predictions. Nat Genet. 2005, 37 (5): 495-500. 10.1038/ng1536.CrossRefPubMed Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M: Combinatorial microRNA target predictions. Nat Genet. 2005, 37 (5): 495-500. 10.1038/ng1536.CrossRefPubMed
12.
go back to reference Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH: MicroRNA expression in zebrafish embryonic development. Science. 2005, 309 (5732): 310-311. 10.1126/science.1114519.CrossRefPubMed Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH: MicroRNA expression in zebrafish embryonic development. Science. 2005, 309 (5732): 310-311. 10.1126/science.1114519.CrossRefPubMed
13.
go back to reference Xu P, Vernooy SY, Guo M, Hay BA: The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Curr Biol. 2003, 13 (9): 790-795. 10.1016/S0960-9822(03)00250-1.CrossRefPubMed Xu P, Vernooy SY, Guo M, Hay BA: The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Curr Biol. 2003, 13 (9): 790-795. 10.1016/S0960-9822(03)00250-1.CrossRefPubMed
14.
go back to reference Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM: < i > bantam</i > Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene < i > hid</i > in < i > Drosophila</i>. Cell. 2003, 113 (1): 25-36. 10.1016/S0092-8674(03)00231-9.CrossRefPubMed Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM: < i > bantam</i > Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene < i > hid</i > in < i > Drosophila</i>. Cell. 2003, 113 (1): 25-36. 10.1016/S0092-8674(03)00231-9.CrossRefPubMed
15.
go back to reference Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2005, 38 (2): 228-233.CrossRefPubMedPubMedCentral Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2005, 38 (2): 228-233.CrossRefPubMedPubMedCentral
16.
go back to reference Cheng AM, Byrom MW, Shelton J, Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005, 33 (4): 1290-1297. 10.1093/nar/gki200.CrossRefPubMedPubMedCentral Cheng AM, Byrom MW, Shelton J, Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005, 33 (4): 1290-1297. 10.1093/nar/gki200.CrossRefPubMedPubMedCentral
17.
go back to reference Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007, 39 (5): 673-677. 10.1038/ng2003.CrossRefPubMed Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007, 39 (5): 673-677. 10.1038/ng2003.CrossRefPubMed
18.
go back to reference Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, Chang T-C, Vivekanandan P, Torbenson M, Clark KR: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009, 137 (6): 1005-1017. 10.1016/j.cell.2009.04.021.CrossRefPubMedPubMedCentral Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, Chang T-C, Vivekanandan P, Torbenson M, Clark KR: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009, 137 (6): 1005-1017. 10.1016/j.cell.2009.04.021.CrossRefPubMedPubMedCentral
19.
go back to reference Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon Y-J, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2011, 18 (1): 74-82.PubMedPubMedCentral Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon Y-J, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2011, 18 (1): 74-82.PubMedPubMedCentral
20.
go back to reference Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci. 2012, 109 (8): 3024-3029. 10.1073/pnas.1200010109.CrossRefPubMedPubMedCentral Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci. 2012, 109 (8): 3024-3029. 10.1073/pnas.1200010109.CrossRefPubMedPubMedCentral
21.
go back to reference Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17 (2): 211-215. 10.1038/nm.2284.CrossRefPubMedPubMedCentral Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17 (2): 211-215. 10.1038/nm.2284.CrossRefPubMedPubMedCentral
22.
go back to reference Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, Goel A: Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomark Prev. 2010, 19 (7): 1766-1774. 10.1158/1055-9965.EPI-10-0027.CrossRef Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, Goel A: Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomark Prev. 2010, 19 (7): 1766-1774. 10.1158/1055-9965.EPI-10-0027.CrossRef
23.
go back to reference Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C-g, Oue N, Yasui W: Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010, 11 (2): 136-146. 10.1016/S1470-2045(09)70343-2.CrossRefPubMed Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C-g, Oue N, Yasui W: Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010, 11 (2): 136-146. 10.1016/S1470-2045(09)70343-2.CrossRefPubMed
24.
go back to reference Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M: MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010, 120 (4): 1298-10.1172/JCI39566.CrossRefPubMedPubMedCentral Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M: MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010, 120 (4): 1298-10.1172/JCI39566.CrossRefPubMedPubMedCentral
25.
go back to reference Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G: Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010, 3 (117): ra29-CrossRefPubMedPubMedCentral Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G: Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010, 3 (117): ra29-CrossRefPubMedPubMedCentral
26.
go back to reference Liu T, Tang H, Lang Y, Liu M, Li X: MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009, 273 (2): 233-242. 10.1016/j.canlet.2008.08.003.CrossRefPubMed Liu T, Tang H, Lang Y, Liu M, Li X: MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009, 273 (2): 233-242. 10.1016/j.canlet.2008.08.003.CrossRefPubMed
27.
go back to reference Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010, 70 (14): 5923-5930. 10.1158/0008-5472.CAN-10-0655.CrossRefPubMedPubMedCentral Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010, 70 (14): 5923-5930. 10.1158/0008-5472.CAN-10-0655.CrossRefPubMedPubMedCentral
28.
go back to reference Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, Khan AA, Setty M, Rondou P, Vandenberghe P: A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011, 43 (7): 673-678. 10.1038/ng.858.CrossRefPubMedPubMedCentral Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, Khan AA, Setty M, Rondou P, Vandenberghe P: A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011, 43 (7): 673-678. 10.1038/ng.858.CrossRefPubMedPubMedCentral
29.
go back to reference Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y: Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res. 2011, 71 (13): 4628-4639. 10.1158/0008-5472.CAN-10-2475.CrossRefPubMed Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y: Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res. 2011, 71 (13): 4628-4639. 10.1158/0008-5472.CAN-10-2475.CrossRefPubMed
30.
go back to reference Wu L-W: Abstract A16: MiR-22 down-regulation via epigenetic control in oral cancer cells. Cancer Res. 2012, 72 (2 Supplement): A16-A16. 10.1158/1538-7445.NONRNA12-A16.CrossRef Wu L-W: Abstract A16: MiR-22 down-regulation via epigenetic control in oral cancer cells. Cancer Res. 2012, 72 (2 Supplement): A16-A16. 10.1158/1538-7445.NONRNA12-A16.CrossRef
31.
go back to reference Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, Spisni E, Pantaleo MA, Biasco G, Tomasi V: MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009, 315 (8): 1439-1447. 10.1016/j.yexcr.2008.12.010.CrossRefPubMed Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, Spisni E, Pantaleo MA, Biasco G, Tomasi V: MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009, 315 (8): 1439-1447. 10.1016/j.yexcr.2008.12.010.CrossRefPubMed
32.
go back to reference Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM: miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget. 2010, 1 (8): 710-CrossRefPubMed Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM: miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget. 2010, 1 (8): 710-CrossRefPubMed
33.
go back to reference Kong D, Piao Y-S, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y: Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene. 2011, 31 (35): 3949-3960.CrossRefPubMed Kong D, Piao Y-S, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y: Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene. 2011, 31 (35): 3949-3960.CrossRefPubMed
34.
go back to reference Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK, Mo Y-Y, Iiizumi-Gairani M, Hirota S, Liu Y: miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013, 73 (4): 1434-1444. 10.1158/0008-5472.CAN-12-2037.CrossRefPubMedPubMedCentral Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK, Mo Y-Y, Iiizumi-Gairani M, Hirota S, Liu Y: miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013, 73 (4): 1434-1444. 10.1158/0008-5472.CAN-12-2037.CrossRefPubMedPubMedCentral
35.
go back to reference Yang F, Yin Y, Wang F, Wang Y, Zhang L, Tang Y, Sun S: miR‒17‒5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen‒activated protein kinase‒heat shock protein 27 pathway. Hepatology. 2010, 51 (5): 1614-1623. 10.1002/hep.23566.CrossRefPubMed Yang F, Yin Y, Wang F, Wang Y, Zhang L, Tang Y, Sun S: miR‒17‒5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen‒activated protein kinase‒heat shock protein 27 pathway. Hepatology. 2010, 51 (5): 1614-1623. 10.1002/hep.23566.CrossRefPubMed
36.
go back to reference Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M: MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010, 10 (8): 748-757. 10.4161/cbt.10.8.13083.CrossRefPubMed Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M: MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010, 10 (8): 748-757. 10.4161/cbt.10.8.13083.CrossRefPubMed
37.
go back to reference Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y: MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol. 2011, 137 (4): 557-566. 10.1007/s00432-010-0918-4.CrossRefPubMed Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y: MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol. 2011, 137 (4): 557-566. 10.1007/s00432-010-0918-4.CrossRefPubMed
38.
go back to reference Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H: MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci. 2009, 106 (29): 12085-12090. 10.1073/pnas.0905234106.CrossRefPubMedPubMedCentral Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H: MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci. 2009, 106 (29): 12085-12090. 10.1073/pnas.0905234106.CrossRefPubMedPubMedCentral
39.
go back to reference Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008, 110 (1): 13-21. 10.1016/j.ygyno.2008.04.033.CrossRefPubMed Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008, 110 (1): 13-21. 10.1016/j.ygyno.2008.04.033.CrossRefPubMed
40.
go back to reference Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Störkel S: EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012, 13 (1): 33-42. 10.1016/S1470-2045(11)70318-7.CrossRefPubMed Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Störkel S: EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012, 13 (1): 33-42. 10.1016/S1470-2045(11)70318-7.CrossRefPubMed
41.
go back to reference Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R, Jiang S, Li G, Chen Y: microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res. 2009, 1269: 158-165.CrossRefPubMed Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R, Jiang S, Li G, Chen Y: microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res. 2009, 1269: 158-165.CrossRefPubMed
42.
go back to reference Ma L, Teruya-Feldstein J, Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007, 449 (7163): 682-688. 10.1038/nature06174.CrossRefPubMed Ma L, Teruya-Feldstein J, Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007, 449 (7163): 682-688. 10.1038/nature06174.CrossRefPubMed
43.
go back to reference Huang Q, Gumireddy K, Schrier M, Le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008, 10 (2): 202-210. 10.1038/ncb1681.CrossRefPubMed Huang Q, Gumireddy K, Schrier M, Le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008, 10 (2): 202-210. 10.1038/ncb1681.CrossRefPubMed
44.
go back to reference Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D: miR‒15b and miR‒16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 2008, 123 (2): 372-379. 10.1002/ijc.23501.CrossRefPubMed Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D: miR‒15b and miR‒16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 2008, 123 (2): 372-379. 10.1002/ijc.23501.CrossRefPubMed
45.
go back to reference Zhu W, Shan X, Wang T, Shu Y, Liu P: miR‒181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 2010, 127 (11): 2520-2529. 10.1002/ijc.25260.CrossRefPubMed Zhu W, Shan X, Wang T, Shu Y, Liu P: miR‒181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 2010, 127 (11): 2520-2529. 10.1002/ijc.25260.CrossRefPubMed
46.
go back to reference Narvaiza I, Aparicio O, Vera M, Razquin N, Bortolanza S, Prieto J, Fortes P: Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing. J Virol. 2006, 80 (24): 12236-12247. 10.1128/JVI.01205-06.CrossRefPubMedPubMedCentral Narvaiza I, Aparicio O, Vera M, Razquin N, Bortolanza S, Prieto J, Fortes P: Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing. J Virol. 2006, 80 (24): 12236-12247. 10.1128/JVI.01205-06.CrossRefPubMedPubMedCentral
47.
go back to reference Wyllie A, Carder P, Clarke A, Cripps K, Gledhill S, Greaves M, Griffiths S, Harrison D, Hooper M, Morris R: Apoptosis in carcinogenesis: the role of p53. Cold Spring Harbor symposia on quantitative biology: 1994. 1994, Cold Spring Harbor Laboratory Press, 403-409. Wyllie A, Carder P, Clarke A, Cripps K, Gledhill S, Greaves M, Griffiths S, Harrison D, Hooper M, Morris R: Apoptosis in carcinogenesis: the role of p53. Cold Spring Harbor symposia on quantitative biology: 1994. 1994, Cold Spring Harbor Laboratory Press, 403-409.
48.
go back to reference Wyllie A: Apoptosis and carcinogenesis. Eur J Cell Biol. 1997, 73 (3): 189-PubMed Wyllie A: Apoptosis and carcinogenesis. Eur J Cell Biol. 1997, 73 (3): 189-PubMed
49.
go back to reference Chen L, Tang Y, Wang J, Yan Z, Xu R: miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4. Biochem Biophys Res Commun. 2013, 435 (4): 745-750. 10.1016/j.bbrc.2013.05.056.CrossRefPubMed Chen L, Tang Y, Wang J, Yan Z, Xu R: miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4. Biochem Biophys Res Commun. 2013, 435 (4): 745-750. 10.1016/j.bbrc.2013.05.056.CrossRefPubMed
50.
go back to reference Lin RJ, Lin YC, Yu AL: miR‒149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog. 2010, 49 (8): 719-727.PubMed Lin RJ, Lin YC, Yu AL: miR‒149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog. 2010, 49 (8): 719-727.PubMed
51.
go back to reference Welch C, Chen Y, Stallings R: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007, 26 (34): 5017-5022. 10.1038/sj.onc.1210293.CrossRefPubMed Welch C, Chen Y, Stallings R: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007, 26 (34): 5017-5022. 10.1038/sj.onc.1210293.CrossRefPubMed
52.
go back to reference Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D: miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Experimental Med. 2011, 208 (3): 549-560. 10.1084/jem.20101547.CrossRef Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D: miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Experimental Med. 2011, 208 (3): 549-560. 10.1084/jem.20101547.CrossRef
53.
go back to reference Li J-H, Xiao X, Zhang Y-N, Wang Y-M, Feng L-M, Wu Y-M, Zhang Y-X: MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol. 2011, 120 (1): 145-151. 10.1016/j.ygyno.2010.09.009.CrossRefPubMed Li J-H, Xiao X, Zhang Y-N, Wang Y-M, Feng L-M, Wu Y-M, Zhang Y-X: MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol. 2011, 120 (1): 145-151. 10.1016/j.ygyno.2010.09.009.CrossRefPubMed
54.
go back to reference Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X: miR-183 inhibits TGF-β1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer. 2010, 10 (1): 354-10.1186/1471-2407-10-354.CrossRefPubMedPubMedCentral Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X: miR-183 inhibits TGF-β1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer. 2010, 10 (1): 354-10.1186/1471-2407-10-354.CrossRefPubMedPubMedCentral
55.
go back to reference Levy D, Kessler D, Pine R, Reich N, Darnell J: Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988, 2 (4): 383-393. 10.1101/gad.2.4.383.CrossRefPubMed Levy D, Kessler D, Pine R, Reich N, Darnell J: Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988, 2 (4): 383-393. 10.1101/gad.2.4.383.CrossRefPubMed
56.
go back to reference Karupiah G, Xie Q-w, Buller R, Nathan C, Duarte C, Macmicking JD: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993, 261 (5127): 1445-1448. 10.1126/science.7690156.CrossRefPubMed Karupiah G, Xie Q-w, Buller R, Nathan C, Duarte C, Macmicking JD: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993, 261 (5127): 1445-1448. 10.1126/science.7690156.CrossRefPubMed
57.
go back to reference Lee SB, Esteban M: The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology. 1994, 199 (2): 491-496. 10.1006/viro.1994.1151.CrossRefPubMed Lee SB, Esteban M: The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology. 1994, 199 (2): 491-496. 10.1006/viro.1994.1151.CrossRefPubMed
58.
go back to reference Terenzi F, Hui DJ, Merrick WC, Sen GC: Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem. 2006, 281 (45): 34064-34071. 10.1074/jbc.M605771200.CrossRefPubMed Terenzi F, Hui DJ, Merrick WC, Sen GC: Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem. 2006, 281 (45): 34064-34071. 10.1074/jbc.M605771200.CrossRefPubMed
59.
go back to reference Terenzi F, White C, Pal S, Williams BR, Sen GC: Tissue-specific and inducer-specific differential induction of ISG56 and ISG54 in mice. J Virol. 2007, 81 (16): 8656-8665. 10.1128/JVI.00322-07.CrossRefPubMedPubMedCentral Terenzi F, White C, Pal S, Williams BR, Sen GC: Tissue-specific and inducer-specific differential induction of ISG56 and ISG54 in mice. J Virol. 2007, 81 (16): 8656-8665. 10.1128/JVI.00322-07.CrossRefPubMedPubMedCentral
60.
go back to reference Yang Z, Liang H, Zhou Q, Li Y, Chen H, Ye W, Chen D, Fleming J, Shu H, Liu Y: Crystal structure of ISG54 reveals a novel RNA binding structure and potential functional mechanisms. Cell Res. 2012, 22 (9): 1328-1338. 10.1038/cr.2012.111.CrossRefPubMedPubMedCentral Yang Z, Liang H, Zhou Q, Li Y, Chen H, Ye W, Chen D, Fleming J, Shu H, Liu Y: Crystal structure of ISG54 reveals a novel RNA binding structure and potential functional mechanisms. Cell Res. 2012, 22 (9): 1328-1338. 10.1038/cr.2012.111.CrossRefPubMedPubMedCentral
61.
go back to reference Stawowczyk M, Van Scoy S, Kumar KP, Reich NC: The interferon stimulated gene 54 promotes apoptosis. J Biol Chem. 2011, 286 (9): 7257-7266. 10.1074/jbc.M110.207068.CrossRefPubMed Stawowczyk M, Van Scoy S, Kumar KP, Reich NC: The interferon stimulated gene 54 promotes apoptosis. J Biol Chem. 2011, 286 (9): 7257-7266. 10.1074/jbc.M110.207068.CrossRefPubMed
62.
go back to reference Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K: The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000, 6 (6): 1389-1399. 10.1016/S1097-2765(00)00136-2.CrossRefPubMedPubMedCentral Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K: The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000, 6 (6): 1389-1399. 10.1016/S1097-2765(00)00136-2.CrossRefPubMedPubMedCentral
Metadata
Title
MicroRNA-645, up-regulated in human adencarcinoma of gastric esophageal junction, inhibits apoptosis by targeting tumor suppressor IFIT2
Authors
Xiaoshan Feng
Ying Wang
Zhikun Ma
Ruina Yang
Shuo Liang
Mengxi Zhang
Shiyuan Song
Shuoguo Li
Gang Liu
Daiming Fan
Shegan Gao
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-633

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine