Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke

Authors: Matthew North, Joe Shuga, Michele Fromowitz, Alexandre Loguinov, Kevin Shannon, Luoping Zhang, Martyn T Smith, Chris D Vulpe

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1.

Methods

Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed.

Results

Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia.

Conclusions

Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smith MT: Advances in understanding benzene health effects and susceptibility. Annu Rev Public Health. 2010, 31: 33-148. 132 p following 148CrossRef Smith MT: Advances in understanding benzene health effects and susceptibility. Annu Rev Public Health. 2010, 31: 33-148. 132 p following 148CrossRef
2.
go back to reference Pons M, Cousins SW, Csaky KG, Striker G, Marin-Castano ME: Cigarette smoke-related hydroquinone induces filamentous actin reorganization and heat shock protein 27 phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal pigment epithelium: implications for age-related macular degeneration. Am J Pathol. 2010, 177 (3): 1198-1213. 10.2353/ajpath.2010.091108.CrossRefPubMedPubMedCentral Pons M, Cousins SW, Csaky KG, Striker G, Marin-Castano ME: Cigarette smoke-related hydroquinone induces filamentous actin reorganization and heat shock protein 27 phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal pigment epithelium: implications for age-related macular degeneration. Am J Pathol. 2010, 177 (3): 1198-1213. 10.2353/ajpath.2010.091108.CrossRefPubMedPubMedCentral
3.
go back to reference Deisinger PJ, Hill TS, English JC: Human exposure to naturally occurring hydroquinone. J Toxicol Environ Health. 1996, 47 (1): 31-46. 10.1080/009841096161915.CrossRefPubMed Deisinger PJ, Hill TS, English JC: Human exposure to naturally occurring hydroquinone. J Toxicol Environ Health. 1996, 47 (1): 31-46. 10.1080/009841096161915.CrossRefPubMed
4.
go back to reference Gill DP, Ahmed AE: Covalent binding of [14C]benzene to cellular organelles and bone marrow nucleic acids. Biochem Pharmacol. 1981, 30 (10): 1127-1131. 10.1016/0006-2952(81)90452-4.CrossRefPubMed Gill DP, Ahmed AE: Covalent binding of [14C]benzene to cellular organelles and bone marrow nucleic acids. Biochem Pharmacol. 1981, 30 (10): 1127-1131. 10.1016/0006-2952(81)90452-4.CrossRefPubMed
5.
go back to reference Gaskell M, McLuckie KI, Farmer PB: Genotoxicity of the benzene metabolites para-benzoquinone and hydroquinone. Chem Biol Interact. 2005, 153–154: 267-270.CrossRefPubMed Gaskell M, McLuckie KI, Farmer PB: Genotoxicity of the benzene metabolites para-benzoquinone and hydroquinone. Chem Biol Interact. 2005, 153–154: 267-270.CrossRefPubMed
6.
go back to reference North M, Tandon VJ, Thomas R, Loguinov A, Gerlovina I, Hubbard AE, Zhang L, Smith MT, Vulpe CD: Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast. PLoS One. 2011, 6 (8): e24205-10.1371/journal.pone.0024205.CrossRefPubMedPubMedCentral North M, Tandon VJ, Thomas R, Loguinov A, Gerlovina I, Hubbard AE, Zhang L, Smith MT, Vulpe CD: Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast. PLoS One. 2011, 6 (8): e24205-10.1371/journal.pone.0024205.CrossRefPubMedPubMedCentral
7.
go back to reference Smith MT: The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect. 1996, 104 (Suppl 6): 1219-1225. 10.1289/ehp.961041219.CrossRefPubMedPubMedCentral Smith MT: The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect. 1996, 104 (Suppl 6): 1219-1225. 10.1289/ehp.961041219.CrossRefPubMedPubMedCentral
8.
go back to reference Buday L, Downward J: Many faces of Ras activation. Biochim Biophys Acta. 2008, 1786 (2): 178-187.PubMed Buday L, Downward J: Many faces of Ras activation. Biochim Biophys Acta. 2008, 1786 (2): 178-187.PubMed
9.
go back to reference Braun BS, Shannon K: Targeting Ras in myeloid leukemias. Clin Cancer Res. 2008, 14 (8): 2249-2252. 10.1158/1078-0432.CCR-07-1005.CrossRefPubMed Braun BS, Shannon K: Targeting Ras in myeloid leukemias. Clin Cancer Res. 2008, 14 (8): 2249-2252. 10.1158/1078-0432.CCR-07-1005.CrossRefPubMed
10.
go back to reference Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012, 120 (17): 3397-3406. 10.1182/blood-2012-05-378596.CrossRefPubMedPubMedCentral Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012, 120 (17): 3397-3406. 10.1182/blood-2012-05-378596.CrossRefPubMedPubMedCentral
11.
go back to reference Yoon S, Seger R: The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006, 24 (1): 21-44. 10.1080/02699050500284218.CrossRefPubMed Yoon S, Seger R: The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006, 24 (1): 21-44. 10.1080/02699050500284218.CrossRefPubMed
12.
go back to reference Tidyman WE, Rauen KA: The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009, 19 (3): 230-236. 10.1016/j.gde.2009.04.001.CrossRefPubMedPubMedCentral Tidyman WE, Rauen KA: The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009, 19 (3): 230-236. 10.1016/j.gde.2009.04.001.CrossRefPubMedPubMedCentral
13.
go back to reference Cichowski K, Jacks T: NF1 tumor suppressor gene function: narrowing the GAP. Cell. 2001, 104 (4): 593-604. 10.1016/S0092-8674(01)00245-8.CrossRefPubMed Cichowski K, Jacks T: NF1 tumor suppressor gene function: narrowing the GAP. Cell. 2001, 104 (4): 593-604. 10.1016/S0092-8674(01)00245-8.CrossRefPubMed
14.
go back to reference Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt P, et al: NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res. 2010, 16 (16): 4135-4147. 10.1158/1078-0432.CCR-09-2639.CrossRefPubMedPubMedCentral Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt P, et al: NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res. 2010, 16 (16): 4135-4147. 10.1158/1078-0432.CCR-09-2639.CrossRefPubMedPubMedCentral
15.
go back to reference Stiller CA, Chessells JM, Fitchett M: Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994, 70 (5): 969-972. 10.1038/bjc.1994.431.CrossRefPubMedPubMedCentral Stiller CA, Chessells JM, Fitchett M: Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994, 70 (5): 969-972. 10.1038/bjc.1994.431.CrossRefPubMedPubMedCentral
16.
go back to reference Shannon KM, O'Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F: Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994, 330 (9): 597-601. 10.1056/NEJM199403033300903.CrossRefPubMed Shannon KM, O'Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F: Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994, 330 (9): 597-601. 10.1056/NEJM199403033300903.CrossRefPubMed
17.
go back to reference Maris JM, Wiersma SR, Mahgoub N, Thompson P, Geyer RJ, Hurwitz CG, Lange BJ, Shannon KM: Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer. 1997, 79 (7): 1438-1446. 10.1002/(SICI)1097-0142(19970401)79:7<1438::AID-CNCR22>3.0.CO;2-#.CrossRefPubMed Maris JM, Wiersma SR, Mahgoub N, Thompson P, Geyer RJ, Hurwitz CG, Lange BJ, Shannon KM: Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer. 1997, 79 (7): 1438-1446. 10.1002/(SICI)1097-0142(19970401)79:7<1438::AID-CNCR22>3.0.CO;2-#.CrossRefPubMed
18.
go back to reference Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS, Wang E, Kogan SC, Le Beau MM, Parada L, et al: Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood. 2004, 103 (11): 4243-4250. 10.1182/blood-2003-08-2650.CrossRefPubMed Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS, Wang E, Kogan SC, Le Beau MM, Parada L, et al: Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood. 2004, 103 (11): 4243-4250. 10.1182/blood-2003-08-2650.CrossRefPubMed
19.
go back to reference Chao RC, Pyzel U, Fridlyand J, Kuo YM, Teel L, Haaga J, Borowsky A, Horvai A, Kogan SC, Bonifas J, et al: Therapy-induced malignant neoplasms in Nf1 mutant mice. Cancer Cell. 2005, 8 (4): 337-348. 10.1016/j.ccr.2005.08.011.CrossRefPubMed Chao RC, Pyzel U, Fridlyand J, Kuo YM, Teel L, Haaga J, Borowsky A, Horvai A, Kogan SC, Bonifas J, et al: Therapy-induced malignant neoplasms in Nf1 mutant mice. Cancer Cell. 2005, 8 (4): 337-348. 10.1016/j.ccr.2005.08.011.CrossRefPubMed
20.
go back to reference Nakamura JL, Phong C, Pinarbasi E, Kogan SC, Vandenberg S, Horvai AE, Faddegon BA, Fiedler D, Shokat K, Houseman BT, et al: Dose-dependent effects of focal fractionated irradiation on secondary malignant neoplasms in Nf1 mutant mice. Cancer Res. 2011, 71 (1): 106-115. 10.1158/0008-5472.CAN-10-2732.CrossRefPubMedPubMedCentral Nakamura JL, Phong C, Pinarbasi E, Kogan SC, Vandenberg S, Horvai AE, Faddegon BA, Fiedler D, Shokat K, Houseman BT, et al: Dose-dependent effects of focal fractionated irradiation on secondary malignant neoplasms in Nf1 mutant mice. Cancer Res. 2011, 71 (1): 106-115. 10.1158/0008-5472.CAN-10-2732.CrossRefPubMedPubMedCentral
21.
go back to reference Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, et al: Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996, 12 (2): 144-148. 10.1038/ng0296-144.CrossRefPubMed Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, et al: Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996, 12 (2): 144-148. 10.1038/ng0296-144.CrossRefPubMed
22.
go back to reference Mullally A, Ebert BL: NF1 inactivation revs up Ras in adult acute myelogenous leukemia. Clin Cancer Res. 2010, 16 (16): 4074-4076. 10.1158/1078-0432.CCR-10-1438.CrossRefPubMed Mullally A, Ebert BL: NF1 inactivation revs up Ras in adult acute myelogenous leukemia. Clin Cancer Res. 2010, 16 (16): 4074-4076. 10.1158/1078-0432.CCR-10-1438.CrossRefPubMed
23.
go back to reference Lauchle JO, Braun BS, Loh ML, Shannon K: Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr Blood Cancer. 2006, 46 (5): 579-585. 10.1002/pbc.20644.CrossRefPubMed Lauchle JO, Braun BS, Loh ML, Shannon K: Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr Blood Cancer. 2006, 46 (5): 579-585. 10.1002/pbc.20644.CrossRefPubMed
24.
go back to reference Wakamatsu N, Collins JB, Parker JS, Tessema M, Clayton NP, Ton TV, Hong HH, Belinsky S, Devereux TR, Sills RC, et al: Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors. Toxicol Pathol. 2008, 36 (5): 743-752. 10.1177/0192623308320801.CrossRefPubMed Wakamatsu N, Collins JB, Parker JS, Tessema M, Clayton NP, Ton TV, Hong HH, Belinsky S, Devereux TR, Sills RC, et al: Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors. Toxicol Pathol. 2008, 36 (5): 743-752. 10.1177/0192623308320801.CrossRefPubMed
25.
go back to reference Houle CD, Ton TV, Clayton N, Huff J, Hong HH, Sills RC: Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol. 2006, 34 (6): 752-762. 10.1080/01926230600935912.CrossRefPubMed Houle CD, Ton TV, Clayton N, Huff J, Hong HH, Sills RC: Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol. 2006, 34 (6): 752-762. 10.1080/01926230600935912.CrossRefPubMed
26.
go back to reference Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990, 63 (4): 835-841. 10.1016/0092-8674(90)90149-9.CrossRefPubMed Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990, 63 (4): 835-841. 10.1016/0092-8674(90)90149-9.CrossRefPubMed
27.
go back to reference Weeks G, Spiegelman GB: Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal. 2003, 15 (10): 901-909. 10.1016/S0898-6568(03)00073-1.CrossRefPubMed Weeks G, Spiegelman GB: Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal. 2003, 15 (10): 901-909. 10.1016/S0898-6568(03)00073-1.CrossRefPubMed
28.
go back to reference Shuga J, Zhang J, Samson LD, Lodish HF, Griffith LG: In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc Natl Acad Sci USA. 2007, 104 (21): 8737-8742. 10.1073/pnas.0701829104.CrossRefPubMedPubMedCentral Shuga J, Zhang J, Samson LD, Lodish HF, Griffith LG: In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc Natl Acad Sci USA. 2007, 104 (21): 8737-8742. 10.1073/pnas.0701829104.CrossRefPubMedPubMedCentral
29.
go back to reference Miller BM, Zitzelsberger HF, Weier HU, Adler ID: Classification of micronuclei in murine erythrocytes: immunofluorescent staining using CREST antibodies compared to in situ hybridization with biotinylated gamma satellite DNA. Mutagenesis. 1991, 6 (4): 297-302. 10.1093/mutage/6.4.297.CrossRefPubMed Miller BM, Zitzelsberger HF, Weier HU, Adler ID: Classification of micronuclei in murine erythrocytes: immunofluorescent staining using CREST antibodies compared to in situ hybridization with biotinylated gamma satellite DNA. Mutagenesis. 1991, 6 (4): 297-302. 10.1093/mutage/6.4.297.CrossRefPubMed
30.
go back to reference Largaespada DA, Brannan CI, Jenkins NA, Copeland NG: Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996, 12 (2): 137-143. 10.1038/ng0296-137.CrossRefPubMed Largaespada DA, Brannan CI, Jenkins NA, Copeland NG: Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996, 12 (2): 137-143. 10.1038/ng0296-137.CrossRefPubMed
31.
go back to reference Hirai O, Miyamae Y, Fujino Y, Izumi H, Miyamoto A, Noguchi H: Prior bleeding enhances the sensitivity of the in vivo micronucleus test. Mutat Res. 1991, 264 (3): 109-114. 10.1016/0165-7992(91)90125-N.CrossRefPubMed Hirai O, Miyamae Y, Fujino Y, Izumi H, Miyamoto A, Noguchi H: Prior bleeding enhances the sensitivity of the in vivo micronucleus test. Mutat Res. 1991, 264 (3): 109-114. 10.1016/0165-7992(91)90125-N.CrossRefPubMed
32.
go back to reference Suzuki Y, Nagae Y, Ishikawa T, Watanabe Y, Nagashima T, Matsukubo K, Shimizu H: Effect of erythropoietin on the micronucleus test. Environ Mol Mutagen. 1989, 13 (4): 314-318. 10.1002/em.2850130406.CrossRefPubMed Suzuki Y, Nagae Y, Ishikawa T, Watanabe Y, Nagashima T, Matsukubo K, Shimizu H: Effect of erythropoietin on the micronucleus test. Environ Mol Mutagen. 1989, 13 (4): 314-318. 10.1002/em.2850130406.CrossRefPubMed
33.
go back to reference Irons RD, Stillman WS, Colagiovanni DB, Henry VA: Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci USA. 1992, 89 (9): 3691-3695. 10.1073/pnas.89.9.3691.CrossRefPubMedPubMedCentral Irons RD, Stillman WS, Colagiovanni DB, Henry VA: Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci USA. 1992, 89 (9): 3691-3695. 10.1073/pnas.89.9.3691.CrossRefPubMedPubMedCentral
34.
go back to reference Zhang YY, Vik TA, Ryder JW, Srour EF, Jacks T, Shannon K, Clapp DW: Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med. 1998, 187 (11): 1893-1902. 10.1084/jem.187.11.1893.CrossRefPubMedPubMedCentral Zhang YY, Vik TA, Ryder JW, Srour EF, Jacks T, Shannon K, Clapp DW: Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med. 1998, 187 (11): 1893-1902. 10.1084/jem.187.11.1893.CrossRefPubMedPubMedCentral
35.
go back to reference Zheng JH, Pyatt DW, Gross SA, Le AT, Kerzic PJ, Irons RD: Hydroquinone modulates the GM-CSF signaling pathway in TF-1 cells. Leukemia. 2004, 18 (7): 1296-1304. 10.1038/sj.leu.2403389.CrossRefPubMed Zheng JH, Pyatt DW, Gross SA, Le AT, Kerzic PJ, Irons RD: Hydroquinone modulates the GM-CSF signaling pathway in TF-1 cells. Leukemia. 2004, 18 (7): 1296-1304. 10.1038/sj.leu.2403389.CrossRefPubMed
36.
go back to reference DeCaprio AP: The toxicology of hydroquinone–relevance to occupational and environmental exposure. Crit Rev Toxicol. 1999, 29 (3): 283-330. 10.1080/10408449991349221.CrossRefPubMed DeCaprio AP: The toxicology of hydroquinone–relevance to occupational and environmental exposure. Crit Rev Toxicol. 1999, 29 (3): 283-330. 10.1080/10408449991349221.CrossRefPubMed
37.
go back to reference Abdelmohsen K, Gerber PA, von Montfort C, Sies H, Klotz LO: Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J Biol Chem. 2003, 278 (40): 38360-38367. 10.1074/jbc.M306785200.CrossRefPubMed Abdelmohsen K, Gerber PA, von Montfort C, Sies H, Klotz LO: Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J Biol Chem. 2003, 278 (40): 38360-38367. 10.1074/jbc.M306785200.CrossRefPubMed
38.
go back to reference Zhang J, Lodish HF: Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood. 2004, 104 (6): 1679-1687. 10.1182/blood-2004-04-1362.CrossRefPubMed Zhang J, Lodish HF: Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood. 2004, 104 (6): 1679-1687. 10.1182/blood-2004-04-1362.CrossRefPubMed
39.
go back to reference Meyer M, Rubsamen D, Slany R, Illmer T, Stabla K, Roth P, Stiewe T, Eilers M, Neubauer A: Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLoS One. 2009, 4 (11): e7768-10.1371/journal.pone.0007768.CrossRefPubMedPubMedCentral Meyer M, Rubsamen D, Slany R, Illmer T, Stabla K, Roth P, Stiewe T, Eilers M, Neubauer A: Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLoS One. 2009, 4 (11): e7768-10.1371/journal.pone.0007768.CrossRefPubMedPubMedCentral
40.
go back to reference Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, et al: Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 2005, 19 (23): 2816-2826. 10.1101/gad.1362105.CrossRefPubMedPubMedCentral Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, et al: Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 2005, 19 (23): 2816-2826. 10.1101/gad.1362105.CrossRefPubMedPubMedCentral
Metadata
Title
Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke
Authors
Matthew North
Joe Shuga
Michele Fromowitz
Alexandre Loguinov
Kevin Shannon
Luoping Zhang
Martyn T Smith
Chris D Vulpe
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-6

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine